36 research outputs found

    Cerebropulmonary dysgenetic syndrome

    Get PDF
    Author Posting. © The Author(s), 2008. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Experimental and Molecular Pathology 85 (2008): 112-116, doi:10.1016/j.yexmp.2008.04.006.Ventilatory treatment of neonatal respiratory distress often results in bronchopulmonary dysplasia from congenital surfactant deficiency due to mutants of transporter protein ABCA3. Association of this condition with other severe disorders in premature newborns has not heretofore been reported. A neonatal autopsy included an in vivo whole blood sample for genetic tcsting. Autopsy revealed severe interstitial pulmonary fibrosis at age 8 days with heterozygotic mutation p.E292V of ABCA3 and severe dystrophic retardation of cerebral cortcx and cerebellum. Subsequently, 1300 archival neonatal autopsies, 1983-2006, were reviewed for comparable concurrent findings and bronchopulmonary dysplasia or retarded cerebral dystrophy lacking the other principal feature of this syndrome. Archival review revealed four similar cases and eight less so, without gene analysis. Further review for bronchopulmonary dysplasia revealed 59 cases, 1983-2006. Several other examples of similar retarded migration of germinal matrix and underdevelopment of cortical mantle, without pulmonary lesions of this type, were identified. The determination of an ABCA3 mutation in one case of severe pulmonary fibrosis with significant dystrophy of the brain and the identification of four highly similar archival cases and eight others with partial pathological findings supports the designation of an independent disorder, here referred to as the cerebroprrlmonary dysgenetic syndrome

    Efficacy of Leukadherin-1 in the Prevention of Hyperoxia-Induced Lung Injury in Neonatal Rats

    No full text
    Lung inflammation plays a key role in the pathogenesis of bronchopulmonary dysplasia (BPD), a chronic lung disease of premature infants. The challenge in BPD management is the lack of effective and safe antiinflammatory agents. Leukadherin-1 (LA1) is a novel agonist of the leukocyte surface integrin CD11b/CD18 that enhances leukocyte adhesion to ligands and vascular endothelium and thus reduces leukocyte transendothelial migration and influx to the injury sites. Its functional significance in preventing hyperoxia-induced neonatal lung injury is unknown. We tested the hypothesis that administration of LA1 is beneficial in preventing hyperoxia-induced neonatal lung injury, an experimental model of BPD. Newborn rats were exposed to normoxia (21% O(2)) or hyperoxia (85% O(2)) and received twice-daily intraperitoneal injection of LA1 or placebo for 14 days. Hyperoxia exposure in the presence of the placebo resulted in a drastic increase in the influx of neutrophils and macrophages into the alveolar airspaces. This increased leukocyte influx was accompanied by decreased alveolarization and angiogenesis and increased pulmonary vascular remodeling and pulmonary hypertension (PH), the pathological hallmarks of BPD. However, administration of LA1 decreased macrophage infiltration in the lungs during hyperoxia. Furthermore, treatment with LA1 improved alveolarization and angiogenesis and decreased pulmonary vascular remodeling and PH. These data indicate that leukocyte recruitment plays an important role in the experimental model of BPD induced by hyperoxia. Targeting leukocyte trafficking using LA1, an integrin agonist, is beneficial in preventing lung inflammation and protecting alveolar and vascular structures during hyperoxia. Thus, targeting integrin-mediated leukocyte recruitment and inflammation may provide a novel strategy in preventing and treating BPD in preterm infants
    corecore