1,063 research outputs found

    Finite-size effects in tunneling between parallel quantum wires

    Full text link
    We present theoretical calculations and experimental measurements which reveal finite-size effects in the tunneling between two parallel quantum wires, fabricated at the cleaved edge of a GaAs/AlGaAs bilayer heterostructure. Observed oscillations in the differential conductance, as a function of bias voltage and applied magnetic field, provide direct information on the shape of the confining potential. Superimposed modulations indicate the existence of two distinct excitation velocities, as expected from spin-charge separation.Comment: Accepted to Phys. Rev. Lett. 7/200

    Particle tunneling through a polarizable insulator

    Full text link
    The tunneling probability between two leads connected by a molecule, a chain, a film, or a bulk polarizable insulator is investigated within a model of an electron tunneling from lead A to a state higher in energy, describing the barrier, and from there to lead B. To describe the possibility of energy exchange with excitations of the molecule or the insulator we couple the intermediate state to a single oscillator or to a spectrum of these, respectively. In the single-oscillator case we find for weak coupling that the tunneling is weakly suppressed by a Debye-Waller-type factor. For stronger coupling the oscillator gets 'stiff' and we observe a suppression of tunneling since the effective barrier is increased. The probability for the electron to excite the oscillator increases with the coupling. In the case of a film, or a bulk barrier the behavior is qualitatively the same as in the single oscillator case. An insulating chain, as opposed to a film or a bulk connecting the two leads,shows an 'orthogonality catastrophe' similar to that of an electronic transition in a Fermi gas.Comment: 4 pages, 1 figur

    Spectrum and Franck-Condon factors of interacting suspended single-wall carbon nanotubes

    Get PDF
    A low energy theory of suspended carbon nanotube quantum dots in weak tunnelling coupling with metallic leads is presented. The focus is put on the dependence of the spectrum and the Franck-Condon factors on the geometry of the junction including several vibronic modes. The relative size and the relative position of the dot and its associated vibrons strongly influence the electromechanical properties of the system. A detailed analysis of the complete parameters space reveals different regimes: in the short vibron regime the tunnelling of an electron into the nanotube generates a plasmon-vibron excitation while in the long vibron regime polaron excitations dominate the scenario. The small, position dependent Franck-Condon couplings of the small vibron regime convert into uniform, large couplings in the long vibron regime. Selection rules for the excitations of the different plasmon-vibron modes via electronic tunnelling events are also derived.Comment: 23 pages, 8 figures, new version according to the published on

    Influence of nano-mechanical properties on single electron tunneling: A vibrating Single-Electron Transistor

    Full text link
    We describe single electron tunneling through molecular structures under the influence of nano-mechanical excitations. We develop a full quantum mechanical model, which includes charging effects and dissipation, and apply it to the vibrating C60_{60} single electron transistor experiment by Park {\em et al.} {[Nature {\bf 407}, 57 (2000)].} We find good agreement and argue vibrations to be essential to molecular electronic systems. We propose a mechanism to realize negative differential conductance using local bosonic excitations.Comment: 7 pages, 6 figure

    Current-oscillator correlation and Fano factor spectrum of quantum shuttle with finite bias voltage and temperature

    Full text link
    A general master equation is derived to describe an electromechanical single-dot transistor in the Coulomb blockade regime. In the equation, Fermi distribution functions in the two leads are taken into account, which allows one to study the system as a function of bias voltage and temperature of the leads. Furthermore, we treat the coherent interaction mechanism between electron tunneling events and the dynamics of excited vibrational modes. Stationary solutions of the equation are numerically calculated. We show current through the oscillating island at low temperature appears step like characteristics as a function of the bias voltage and the steps depend on mean phonon number of the oscillator. At higher temperatures the current steps would disappear and this event is accompanied by the emergence of thermal noise of the charge transfer. When the system is mainly in the ground state, zero frequency Fano factor of current manifests sub-Poissonian noise and when the system is partially driven into its excited states it exhibits super-Poissonian noise. The difference in the current noise would almost be removed for the situation in which the dissipation rate of the oscillator is much larger than the bare tunneling rates of electrons.Comment: 14 pages, 8 figure

    Effect of the Kondo correlation on thermopower in a Quantum Dot

    Full text link
    In this paper we study the thermopower of a quantum dot connected to two leads in the presence of Kondo correlation by employing a modified second-order perturbation scheme at nonequilibrium. A simple scheme, Ng's ansatz [Phys. Rev. Lett. {\bf 76}, 487 (1996)], is adopted to calculate nonequilibrium distribution Green's function and its validity is further checked with regard to the Onsager relation. Numerical results demonstrate that the sign of the thermopower can be changed by tuning the energy level of the quantum dot, leading to a oscillatory behavior with a suppressed magnitude due to the Kondo effect. We also calculate the thermal conductance of the system, and find that the Wiedemann-Franz law is obeyed at low temperature but violated with increasing temperature, corresponding to emerging and quenching of the Kondo effect.Comment: 6 pages, 4 figures; accepted for publication in J Phys.: Condensed Matte

    Thermoelectric effects in Kondo correlated quantum dots

    Full text link
    In this Letter we study thermoelectric effects in ultra small quantum dots. We study the behaviour of the thermopower, Peltier coefficient and thermal conductance both in the sequencial tunneling regime and in the regime where Kondo correlations develope. Both cases of linear response and non-equilibrium induced by strong temperature gradients are considered. The thermopower is a very sensitive tool to detect Kondo correlations. It changes sign both as a function of temperature and temperature gradient. We also discuss violations of the Wiedemann-Franz law.Comment: 7 pages; 5 figure

    Mechanical Cooper pair transportation as a source of long distance superconducting phase coherence

    Full text link
    Transportation of Cooper-pairs by a movable single Cooper-pair-box placed between two remote superconductors is shown to establish coherent coupling between them. This coupling is due to entanglement of the movable box with the leads and is manifested in the supression of quantum fluctuations of the relative phase of the order parameters of the leads. It can be probed by attaching a high resistance Josephson junction between the leads and measuring the current through this junction. The current is suppressed with increasing temperature.Comment: 4 pages, 4 figures, RevTeX; Updated version, typos correcte

    Phonon distributions of a single bath mode coupled to a quantum dot

    Full text link
    The properties of an unconventional, single mode phonon bath coupled to a quantum dot, are investigated within the rotating wave approximation. The electron current through the dot induces an out of equilibrium bath, with a phonon distribution qualitatively different from the thermal one. In selected transport regimes, such a distribution is characterized by a peculiar selective population of few phonon modes and can exhibit a sub-Poissonian behavior. It is shown that such a sub-Poissonian behavior is favored by a double occupancy of the dot. The crossover from a unequilibrated to a conventional thermal bath is explored, and the limitations of the rotating wave approximation are discussed.Comment: 21 Pages, 7 figures, to appear in New Journal of Physics - Focus on Quantum Dissipation in Unconventional Environment
    • …
    corecore