179 research outputs found
Magnetic relaxation studies on a single-molecule magnet by time-resolved inelastic neutron scattering
Time-resolved inelastic neutron scattering measurements on an array of
single-crystals of the single-molecule magnet Mn12ac are presented. The data
facilitate a spectroscopic investigation of the slow relaxation of the
magnetization in this compound in the time domain.Comment: 3 pages, 4 figures, REVTEX4, to appear in Appl. Phys. Lett., for an
animation see also
http://www.dcb.unibe.ch/groups/guedel/members/ow2/trins.ht
Recommended from our members
Paracoccus denitrificans: a genetically tractable model system for studying respiratory complex I.
Mitochondrial complex I (NADH:ubiquinone oxidoreductase) is a crucial metabolic enzyme that couples the free energy released from NADH oxidation and ubiquinone reduction to the translocation of four protons across the inner mitochondrial membrane, creating the proton motive force for ATP synthesis. The mechanism by which the energy is captured, and the mechanism and pathways of proton pumping, remain elusive despite recent advances in structural knowledge. Progress has been limited by a lack of model systems able to combine functional and structural analyses with targeted mutagenic interrogation throughout the entire complex. Here, we develop and present the α-proteobacterium Paracoccus denitrificans as a suitable bacterial model system for mitochondrial complex I. First, we develop a robust purification protocol to isolate highly active complex I by introducing a His6-tag on the Nqo5 subunit. Then, we optimize the reconstitution of the enzyme into liposomes, demonstrating its proton pumping activity. Finally, we develop a strain of P. denitrificans that is amenable to complex I mutagenesis and create a catalytically inactive variant of the enzyme. Our model provides new opportunities to disentangle the mechanism of complex I by combining mutagenesis in every subunit with established interrogative biophysical measurements on both the soluble and membrane bound enzymes
Thermodynamics of the Spin Luttinger-Liquid in a Model Ladder Material
The phase diagram in temperature and magnetic field of the metal-organic,
two-leg, spin-ladder compound (C5H12N)2CuBr4 is studied by measurements of the
specific heat and the magnetocaloric effect. We demonstrate the presence of an
extended spin Luttinger-liquid phase between two field-induced quantum critical
points and over a broad range of temperature. Based on an ideal spin-ladder
Hamiltonian, comprehensive numerical modelling of the ladder specific heat
yields excellent quantitative agreement with the experimental data across the
complete phase diagram.Comment: 4 pages, 4 figures, updated refs and minor changes to the text,
version accepted for publication in Phys. Rev. Let
Bound states and field-polarized Haldane modes in a quantum spin ladder
The challenge of one-dimensional systems is to understand their physics
beyond the level of known elementary excitations. By high-resolution neutron
spectroscopy in a quantum spin ladder material, we probe the leading
multiparticle excitation by characterizing the two-magnon bound state at zero
field. By applying high magnetic fields, we create and select the singlet
(longitudinal) and triplet (transverse) excitations of the fully spin-polarized
ladder, which have not been observed previously and are close analogs of the
modes anticipated in a polarized Haldane chain. Theoretical modelling of the
dynamical response demonstrates our complete quantitative understanding of
these states.Comment: 6 pages, 3 figures plus supplementary material 7 pages 5 figure
Hydrogen charging in nickel and iron and its effect on their magnetic properties
The current study was undertaken to explore the possibility of detecting hydrogen cavitation in magnetic materials through magnetic propertymeasurements. It is known that dissolved hydrogen in a material causes microvoids. These voids may affect the structureâsensitive magnetic properties such as coercivity and remanence. In this study, hydrogen was introduced into nickel and iron by two processes, namely thermal charging and cathodic charging. The effect on the magnetic properties was measured. In addition, the variation of the magnetic properties with porosity was studied
Engineering & Performance of DuoTurbo: Microturbine with Counter-Rotating Runners
Considering the nuclear phase-out strategy of several European countries and the future tendency to promote renewable energies, the exploitation of small hydropower sites (<10 MW) becomes increasingly important. In this framework DuoTurbo Turbine, a new DuoTurbo-microturbine prototype for drinking water networks has been jointly developed by the HES-SO Valais//Wallis , the EPFL-Laboratory for Hydraulic Machines and industrial partners. The modular in- line âplug & playâ technology requires low investment, reaching economic feasibility with an available power between 5 kW and 25 kW. One stage of the microturbine consists of two axial counter-rotating runners that form a compact independent unit. Each runner of the turbine holds its own rim generator, the DuoTurbo-configuration involving that each hydraulic runner is integral with each electrical rotor. The possibility of stacking several stages in series enables covering quite a wide range of hydraulic power and, thus, recovering a maximum of energy dissipated in release valves of water supply systems. The present work introduces the global concept of the implemented prototype of the DuoTurbo-microturbine, to target a maxim al injected power of 5 kW for a discharge of 9 l/ s and a head of 24.5 m per stage. The main features of the hydraulic, the mechanical, the electrical and the electronic design are presented. The hydraulic performance is, then, assessed using CFD simulations for the expected operating range. Finally, the performance measurements of the single-stage prototype installed in the hydraulic test rig of the HES-SO Valais//Wallis are presented
A model for hysteretic magnetic properties under the application of noncoaxial stress and field
Although descriptions of the effect of stress on spontaneous magnetization within a single domain already exist, there remains no adequate mathematical model for the effects of noncoaxial magnetic field and stress on bulk magnetization in a multidomained specimen. This article addresses the problem and provides a phenomenological theory that applies to the case of bulk isotropic materials. The magnetomechanical hysteresis model of Sablik and Jiles is thus extended to treat magnetic properties in the case of noncoaxial stress and magnetic field in an isotropic, polycrystalline medium. In the modeling, noncollinearity between magnetization and magnetic field is taken into account. The effect of rollâaxis anisotropy is also considered. Both magnetic and magnetostrictive hysteresis are describable by the extended model. Emphasis in this article is on describing properties like coercivity, remanence,hysteresis loss, maximum flux density, and maximum differential permeability as a function of stress for various angular orientations between field and stress axis. The model predictions are compared with experimental results
Evaluation of fatigue damage in steel structural components by magnetoelastic Barkhausen signal analysis
This paper is concerned with using a magnetic technique for the evaluation of fatigue damage in steel structural components. It is shown that Barkhausen effect measurements can be used to indicate impending failure due to fatigue under certain conditions. The Barkhausen signal amplitude is known to be highly sensitive to changes in density and distribution of dislocations in materials. The sensitivity of Barkhausen signal amplitude to fatigue damage has been studied in the lowâcycle fatigue regime using smooth tensile specimens of a medium strength steel. The Barkhausen measurements were taken at depths of penetration of 0.02, 0.07, and 0.2 mm. It was found that changes in magnetic properties are sensitive to microstructural changes taking place at the surface of the material throughout the fatigue life. The changes in the Barkhausen signals have been attributed to distribution of dislocations in stage I and stage II of fatigue life and the formation of a macrocrack in the final stage of fatigue
- âŠ