199 research outputs found

    Compaction dynamics of a granular media under vertical tapping

    Full text link
    We report new experimental results on granular compaction under consecutive vertical taps. The evolution of the mean volume fraction and of the mean potential energy of a granular packing presents a slow densification until a final steady-state, and is reminiscent to usual relaxation in glasses via a stretched exponential law. The intensity of the taps seems to rule the characteristic time of the relaxation according to an Arrhenius's type relation >. Finally, the analysis of the vertical volume fraction profile reveals an almost homogeneous densification in the packing.Comment: 7 pages, 4 figures, to appear in Europhysics Letter

    Granular circulation in a cylindrical pan: simulations of reversing radial and tangential flows

    Full text link
    Granular flows due to simultaneous vertical and horizontal excitations of a flat-bottomed cylindrical pan are investigated using event-driven molecular dynamics simulations. In agreement with recent experimental results, we observe a transition from a solid-like state, to a fluidized state in which circulatory flow occurs simultaneously in the radial and tangential directions. By going beyond the range of conditions explored experimentally, we find that each of these circulations reverse their direction as a function of the control parameters of the motion. We numerically evaluate the dynamical phase diagram for this system and show, using a simple model, that the solid-fluid transition can be understood in terms of a critical value of the radial acceleration of the pan bottom; and that the circulation reversals are controlled by the phase shift relating the horizontal and vertical components of the vibrations. We also discuss the crucial role played by the geometry of the boundary conditions, and point out a relationship of the circulation observed here and the flows generated in vibratory conveyors.Comment: 10 pages, 8 figure

    Packing Fractions and Maximum Angles of Stability of Granular Materials

    Full text link
    In two-dimensional rotating drum experiments, we find two separate influences of the packing fraction of a granular heap on its stability. For a fixed grain shape, the stability increases with packing fraction. However, in determining the relative stability of different grain shapes, those with the lowest average packing fractions tend to form the most stable heaps. We also show that only the configuration close to the surface of the pile figures prominently.Comment: 4 pages, 4 figure

    On the existence of stationary states during granular compaction

    Full text link
    When submitted to gentle mechanical taps a granular packing slowly compacts until it reaches a stationary state that depends on the tap characteristics. The properties of such stationary states are experimentally investigated. The influence of the initial state, taps properties and tapping protocol are studied. The compactivity of the packings is determinated. Our results strongly support the idea that the stationary states are genuine thermodynamic states.Comment: to be published in EPJE. The original publication will be available at www.europhysj.or

    Effect of boundary conditions on diffusion in two-dimensional granular gases

    Full text link
    We analyze the influence of boundary conditions on numerical simulations of the diffusive properties of a two dimensional granular gas. We show in particular that periodic boundary conditions introduce unphysical correlations in time which cause the coefficient of diffusion to be strongly dependent on the system size. On the other hand, in large enough systems with hard walls at the boundaries, diffusion is found to be independent of the system size. We compare the results obtained in this case with Langevin theory for an elastic gas. Good agreement is found. We then calculate the relaxation time and the influence of the mass for a particle of radius RsR_s in a sea of particles of radius RbR_b. As granular gases are dissipative, we also study the influence of an external random force on the diffusion process in a forced dissipative system. In particular, we analyze differences in the mean square velocity and displacement between the elastic and inelastic cases.Comment: 15 figures eps figures, include

    Power law velocity fluctuations due to inelastic collisions in numerically simulated vibrated bed of powder}

    Full text link
    Distribution functions of relative velocities among particles in a vibrated bed of powder are studied both numerically and theoretically. In the solid phase where granular particles remain near their local stable states, the probability distribution is Gaussian. On the other hand, in the fluidized phase, where the particles can exchange their positions, the distribution clearly deviates from Gaussian. This is interpreted with two analogies; aggregation processes and soft-to-hard turbulence transition in thermal convection. The non-Gaussian distribution is well-approximated by the t-distribution which is derived theoretically by considering the effect of clustering by inelastic collisions in the former analogy.Comment: 7 pages, using REVTEX (Figures are inculded in text body) %%%Replacement due to rivision (Europhys. Lett., in press)%%

    Experimental and computational studies of jamming

    Full text link
    Jamming is a common feature of out of equilibrium systems showing slow relaxation dynamics. Here we review our efforts in understanding jamming in granular materials using experiments and computer simulations. We first obtain an estimation of an effective temperature for a slowly sheared granular material very close to jamming. The measurement of the effective temperature is realized in the laboratory by slowly shearing a closely-packed ensemble of spherical beads confined by an external pressure in a Couette geometry. All the probe particles, independent of their characteristic features, equilibrate at the same temperature, given by the packing density of the system. This suggests that the effective temperature is a state variable for the nearly jammed system. Then we investigate numerically whether the effective temperature can be obtained from a flat average over the jammed configuration at a given energy in the granular packing, as postulated by the thermodynamic approach to grains.Comment: 20 pages, 9 figure
    • …
    corecore