279 research outputs found

    31P Magnetic resonance spectroscopy study of phosphocreatine recovery kinetics in skeletal muscle: the issue of intersubject variability

    Get PDF
    AbstractWe have analyzed by 31P MRS the relationship between kinetic parameters of phosphocreatine (PCr) recovery and end-of-exercise status under conditions of moderate and large acidosis induced by dynamic exercise. Thirteen healthy subjects performed muscular contractions at 0.47 Hz (low frequency, moderate exercise) and 0.85 Hz (high frequency, heavy exercise). The rate constant of PCr resynthesis (kPCr) varied greatly among subjects (variation coefficients: 43 vs. 57% for LF vs. HF exercises) and protocols (kPCr values: 1.3±0.5 min−1 vs. 0.9±0.5 min−1 for LF vs. HF exercises, P<0.03). The large intersubject variability can be captured into a linear relationship between kPCr, the amount of PCr consumed ([PCr2]) and pH reached at the end of exercise (pHend) (kPCr=−3.3+0.7 pHend-0.03 [PCr2]; P=0.0007; r=0.61). This dual relationship illustrates that mitochondrial activity is affected by end-of-exercise metabolic status and allows reliable comparisons between control, diseased and trained muscles. In contrast to kPCr, the initial rate of PCr recovery and the maximum oxidative capacity were always constant whatever the metabolic conditions of end-of-exercise and can then be additionally used in the identification of dysfunctions in the oxidative metabolic pathway

    P-31 Magnetic Resonance Spectroscopy. A tool for diagnostic purposes and pathophysiological insights in muscle diseases

    Get PDF
    It has been more than 15 years since 31-phosphorus magnetic resonance spectroscopy (31P-MRS) was first used in order to study human muscle diseases. Its impact on the field of neuromuscular disorders has now become considerable for pathophysiological insights and for diagnostic purposes. Recent reviews (1-3) have summarized the possibilities of the technique that permits to investigate muscle energetic metabolism non-invasively and non-destructively. In this mini-review, we will recall the information provided by a P-31 MRS spectrum when exploring a normal muscle and present the new spectral semiology that is helpful for the diagnosis of metabolic myopathies. We will also show briefly some other clinical applications of this technique

    Práticas e custos de produção para implantação de bosques de Tecas (Tectona grandis) em pastagens de Roraima.

    Get PDF
    bitstream/item/134937/1/COT-143-N72.pd

    Recuperação de pastagens degradadas em propriedade particular na região da Confiança, Município do Cantá, Roraima.

    Get PDF
    bitstream/item/134935/1/COT-144-N71.pd

    Responders to Wide-Pulse, High-Frequency Neuromuscular Electrical Stimulation Show Reduced Metabolic Demand: A 31P-MRS Study in Humans.

    Get PDF
    Conventional (CONV) neuromuscular electrical stimulation (NMES) (i.e., short pulse duration, low frequencies) induces a higher energetic response as compared to voluntary contractions (VOL). In contrast, wide-pulse, high-frequency (WPHF) NMES might elicit-at least in some subjects (i.e., responders)-a different motor unit recruitment compared to CONV that resembles the physiological muscle activation pattern of VOL. We therefore hypothesized that for these responder subjects, the metabolic demand of WPHF would be lower than CONV and comparable to VOL. 18 healthy subjects performed isometric plantar flexions at 10% of their maximal voluntary contraction force for CONV (25 Hz, 0.05 ms), WPHF (100 Hz, 1 ms) and VOL protocols. For each protocol, force time integral (FTI) was quantified and subjects were classified as responders and non-responders to WPHF based on k-means clustering analysis. Furthermore, a fatigue index based on FTI loss at the end of each protocol compared with the beginning of the protocol was calculated. Phosphocreatine depletion (ΔPCr) was assessed using 31P magnetic resonance spectroscopy. Responders developed four times higher FTI's during WPHF (99 ± 37 ×103 N.s) than non-responders (26 ± 12 ×103 N.s). For both responders and non-responders, CONV was metabolically more demanding than VOL when ΔPCr was expressed relative to the FTI. Only for the responder group, the ∆PCr/FTI ratio of WPHF (0.74 ± 0.19 M/N.s) was significantly lower compared to CONV (1.48 ± 0.46 M/N.s) but similar to VOL (0.65 ± 0.21 M/N.s). Moreover, the fatigue index was not different between WPHF (-16%) and CONV (-25%) for the responders. WPHF could therefore be considered as the less demanding NMES modality-at least in this subgroup of subjects-by possibly exhibiting a muscle activation pattern similar to VOL contractions

    Multiscale Femoral Neck Imaging and Multimodal Trabeculae Quality Characterization in an Osteoporotic Bone Sample

    Get PDF
    : Although multiple structural, mechanical, and molecular factors are definitely involved in osteoporosis, the assessment of subregional bone mineral density remains the most commonly used diagnostic index. In this study, we characterized bone quality in the femoral neck of one osteoporotic patients as compared to an age-matched control subject, and so used a multiscale and multimodal approach including X-ray computed microtomography at different spatial resolutions (pixel size: 51.0, 4.95 and 0.9 µm), microindentation and Fourier transform infrared spectroscopy. Our results showed abnormalities in the osteocytes lacunae volume (358.08 ± 165.00 for the osteoporotic sample vs. 287.10 ± 160.00 for the control), whereas a statistical difference was found neither for shape nor for density. The osteoporotic femoral head and great trochanter reported reduced elastic modulus (Es) and hardness (H) compared to the control reference (-48% (p &lt; 0.0001) and -34% (p &lt; 0.0001), respectively for Es and H in the femoral head and -29% (p &lt; 0.01) and -22% (p &lt; 0.05), respectively for Es and H in the great trochanter), whereas the corresponding values in the femoral neck were in the same range. The spectral analysis could distinguish neither subregional differences in the osteoporotic sample nor between the osteoporotic and healthy samples. Although, infrared spectroscopic measurements were comparable among subregions, and so regardless of the bone osteoporotic status, the trabecular mechanical properties were comparable only in the femoral neck. These results illustrate that bone remodeling in osteoporosis is a non-uniform process with different rates in different bone anatomical regions, hence showing the interest of a clear analysis of the bone microarchitecture in the case of patients' osteoporotic evaluation
    corecore