39 research outputs found

    Segmentation non supervisée d'images non stationnaires avec champs de Markov évidentiels

    Get PDF
    - Fréquemment utilisés en traitement statistique d'images, les champs de Markov cachés (CMC) sont des outils puissants qui peuvent fournir des résultats remarquables. Cette qualité est principalement due à l'aptitude du modèle de prendre en compte des dépendances spatiales des variables aléatoires, même lorsqu'elles sont en très grand nombre, pouvant dépasser le milion. Dans un tel modèle le champ caché X est supposé markovien et doit être estimé à partir du champ observé Y . Un tel traitement est possible du fait de la markovianité de X conditionnellement Y . Ce modèle a été ensuite généralisé au champs de Markov couples (CMCouple), où l'on suppose directement la markovianité du couple (X,Y), qui offrent les mêmes possibilités de traitements que les CMC et permettent de mieux modéliser le bruit ce qui permet, en particulier, de mieux prendre en compte l'existence des textures. Par la suite, les CMCouples ont été généralisés aux champs de Markov triplet (CMT), où la loi du couple (X,Y) est une loi marginale d'un champ de Markov triplet T = (X,U,Y), avec un champ auxiliaire U . Par ailleurs, la théorie de l'évidence peut permettre une amélioration des résultats obtenus par des traitements bayésiens dans certaines situations. Le but de cet article est d'aborder le problème de la segmentation non supervisée d'images non stationnaires en utilisant les champs de Markov évidentiels (CME), en exploitant, en particulier, un lien existant entre les CME et les CMT

    Modelling of Short-Term Interactions Between Concrete Support and the Excavated Damage Zone Around Galleries Drilled in Callovo–Oxfordian Claystone

    Get PDF
    peer reviewedProduction of energy from nuclear power plants generates high-level radioactive nuclear waste, harmful during dozens of thousand years. Deep geological disposal of nuclear waste represents the most reliable solutions for its safe isolation. Confinement of radioactive wastes relies on the multi-barrier concept in which isolation is provided by a series of engineered (canister, backfill) and natural (host rock) barriers. Few underground research laboratories have been built all over the world to test and validate storage solutions. The underground drilling process of disposal drifts may generate cracks, fractures/strain localisation in shear bands within the rock surrounding the gallery especially in argillaceous rocks. These degradations affect the hydro-mechanical properties of the material, such as permeability, e.g. creating a preferential flow path for radionuclide migration. Hydraulic conductivity increase within this zone must remain limited to preserve the natural barrier. In addition galleries are currently reinforced by different types of concrete supports such as shotcrete and/or prefab elements. Their purpose is twofold: avoiding partial collapse of the tunnel during drilling operations and limiting convergence of the surrounding rock. Properties of both concrete and rock mass are time dependent, due to shotcrete hydration and hydromechanical couplings within the host rock. By the use of a hydro-mechanical coupled Finite Element Code with a Second Gradient regularization, this paper aims at investigating and predicting support and rock interactions (convergence, stress field). The effect of shotcrete hydration evolution, spraying time and use of compressible wedges is studied in order to determine their relative influence

    Plus- and Minus-End Directed Microtubule Motors Bind Simultaneously to Herpes Simplex Virus Capsids Using Different Inner Tegument Structures

    Get PDF
    Many viruses depend on host microtubule motors to reach their destined intracellular location. Viral particles of neurotropic alphaherpesviruses such as herpes simplex virus 1 (HSV1) show bidirectional transport towards the cell center as well as the periphery, indicating that they utilize microtubule motors of opposing directionality. To understand the mechanisms of specific motor recruitment, it is necessary to characterize the molecular composition of such motile viral structures. We have generated HSV1 capsids with different surface features without impairing their overall architecture, and show that in a mammalian cell-free system the microtubule motors dynein and kinesin-1 and the dynein cofactor dynactin could interact directly with capsids independent of other host factors. The capsid composition and surface was analyzed with respect to 23 structural proteins that are potentially exposed to the cytosol during virus assembly or cell entry. Many of these proteins belong to the tegument, the hallmark of all herpesviruses located between the capsid and the viral envelope. Using immunoblots, quantitative mass spectrometry and quantitative immunoelectron microscopy, we show that capsids exposing inner tegument proteins such as pUS3, pUL36, pUL37, ICP0, pUL14, pUL16, and pUL21 recruited dynein, dynactin, kinesin-1 and kinesin-2. In contrast, neither untegumented capsids exposing VP5, VP26, pUL17 and pUL25 nor capsids covered by outer tegument proteins such as vhs, pUL11, ICP4, ICP34.5, VP11/12, VP13/14, VP16, VP22 or pUS11 bound microtubule motors. Our data suggest that HSV1 uses different structural features of the inner tegument to recruit dynein or kinesin-1. Individual capsids simultaneously accommodated motors of opposing directionality as well as several copies of the same motor. Thus, these associated motors either engage in a tug-of-war or their activities are coordinately regulated to achieve net transport either to the nucleus during cell entry or to cytoplasmic membranes for envelopment during assembly

    Optimal Filter Approximations in Conditionally Gaussian Pairwise Markov Switching Models

    Get PDF
    International audience—We consider a general triplet Markov Gaussian linear system (X, R, Y), where X is an hidden continuous random sequence, R is an hidden discrete Markov chain, Y is an observed continuous random sequence. When the triplet (X, R, Y) is a classical " Conditionally Gaussian Linear State-Space Model " (CGLSSM), the mean square error optimal filter is not workable with a reasonable complexity and different approximate methods, e.g. based on particle filters, are used. We propose two contributions. The first one is to extend the CGLSSM to a new, more general model, called the " Conditionally Gaussian Pairwise Markov Switching Model " (CGPMSM), in which X is not necessarily Markov given R. The second contribution is to consider a particular case of CGPMSM in which (R, Y) is Markov and in which an exact filter, optimal in the sense of mean square error, can be performed with linear-time complexity. Some experiments show that the proposed method and the suited particle filter have comparable efficiency, while the second one is much faster. Index Terms—Conditionally Gaussian linear state-space model, conditionally Gaussian pairwise markov switching model, exact optimal filtering, Gaussian switching system, hidden Markov models

    Optimal Filter Approximations in Conditionally Gaussian Pairwise Markov Switching Models

    No full text

    Cementitious materials with mineral additions: impact on the self-healing kinetics and the products formation

    No full text
    International audienceGround granulated blast-furnace slags (GGBFS), as a hydraulic binder, are widely used for many years in engineering concretes. The French standards allow substituting 50% of Portland cement by GGBFS. This approach leads to a decrease in the CO2 emissions produced during clinkerisation process. Portland cement substitution by GGBFS can also improve the workability, decreases the hydration heat and increases the long-term compressive strength. GGBFS can also significantly improve the resistance to sulfate attack. Concrete structures made with GGBFS cement can be cracked at early age due to restrained shrinkage. This cracking can reduce mechanical and transport properties, leading to an increased risk of aggressive agents’ penetration. Self-healing of cracks, already observed on building sites, could partially overcome these durability issues.To understand the effect of GGBFS on self-healing kinetics and the type of self-healing products, five hydraulic binders were studied: two Portland cement (French and Canadian), two GGBFS (French and Canadian) mixed with Portland cement (named GGBFS formulation hereafter) and a French blended cement (62% of slag) named CEMIII/A. Each material was characterized by XRF, XRD, PZD test, fineness Blaine test and TGA. At 7 and 28 days, French and Canadian mortar specimens were cracked respectively to obtain three crack sizes: 50, 100 and 150 µm. The cracked specimens were then stored at 23 °C and 100% R.H for up to 6 months. The evolution of self-healing is followed by X-ray tomography or air-flow measurements. SEM with EDS were performed on the sawed samples to identify and analyze self-healing products.Results show that two main products are formed: (1) calcite by the carbonation of portlandite in the matrix, and (2) supplementary reaction products (mainly C-S-H with various C/S ratios), formed by the reaction of anhydrous particles. Both GGBFS formulations show a good self-healing potential but the kinetics of the phenomenon are slightly different. Mortar made with French GGBFS presents the best self-healing potential compared to the four others formulations. Mortar with Canadian GGBFS presents a similar behavior as Canadian Portland cement. These results can be explained by the material characteristics but also by their hydration kinetics. A hydration model is currently developed in order to investigate more deeply these observations

    Cementitious materials with mineral additions: impact on the self-healing kinetics and the products formation

    No full text
    International audienceGround granulated blast-furnace slags (GGBFS), as a hydraulic binder, are widely used for many years in engineering concretes. The French standards allow substituting 50% of Portland cement by GGBFS. This approach leads to a decrease in the CO2 emissions produced during clinkerisation process. Portland cement substitution by GGBFS can also improve the workability, decreases the hydration heat and increases the long-term compressive strength. GGBFS can also significantly improve the resistance to sulfate attack. Concrete structures made with GGBFS cement can be cracked at early age due to restrained shrinkage. This cracking can reduce mechanical and transport properties, leading to an increased risk of aggressive agents’ penetration. Self-healing of cracks, already observed on building sites, could partially overcome these durability issues.To understand the effect of GGBFS on self-healing kinetics and the type of self-healing products, five hydraulic binders were studied: two Portland cement (French and Canadian), two GGBFS (French and Canadian) mixed with Portland cement (named GGBFS formulation hereafter) and a French blended cement (62% of slag) named CEMIII/A. Each material was characterized by XRF, XRD, PZD test, fineness Blaine test and TGA. At 7 and 28 days, French and Canadian mortar specimens were cracked respectively to obtain three crack sizes: 50, 100 and 150 µm. The cracked specimens were then stored at 23 °C and 100% R.H for up to 6 months. The evolution of self-healing is followed by X-ray tomography or air-flow measurements. SEM with EDS were performed on the sawed samples to identify and analyze self-healing products.Results show that two main products are formed: (1) calcite by the carbonation of portlandite in the matrix, and (2) supplementary reaction products (mainly C-S-H with various C/S ratios), formed by the reaction of anhydrous particles. Both GGBFS formulations show a good self-healing potential but the kinetics of the phenomenon are slightly different. Mortar made with French GGBFS presents the best self-healing potential compared to the four others formulations. Mortar with Canadian GGBFS presents a similar behavior as Canadian Portland cement. These results can be explained by the material characteristics but also by their hydration kinetics. A hydration model is currently developed in order to investigate more deeply these observations

    Slab-on-grade: Chaponost

    No full text
    International audienc
    corecore