45,355 research outputs found
Holddown arm release mechanism used on Saturn vehicles
With the development of the Saturn launch vehicle, it became mandatory to develop a system for restraining the vehicle until after all checks and engine thrust buildup were completed. The basic Saturn I holddown arm constrains the vehicle by clamping it between a fixed support and a movable jaw. The jaw is on a link pinned to rotate sufficiently to release the vehicle. There are three links in the jaw (restraining) system arranged so that with a small force provided by a pneumatic separator mechanism, the large loads of the vehicle can be restrained. Design details discussed are the link system, the separator, adjustments, and the energy absorber. The function of preloading is discussed. The secondary release system is described. Finally, the design differences between the Saturn I and the Saturn V arm are described
Lorentz Violation and Synchrotron Radiation
We consider the radiation emitted by an ultrarelativistic charged particle
moving in a magnetic field, in the presence of an additional Lorentz-violating
interaction. In contrast with prior work, we treat a form of Lorentz violation
that is represented by a renormalizable operator. Neglecting the radiative
reaction force, the particle's trajectory can be determined exactly. The
resulting orbit is generally noncircular and does not lie in the place
perpendicular to the magnetic field. We do not consider any Lorentz violation
in the electromagnetic sector, so the radiation from the accelerated charge can
be determined by standard means, and the radiation spectrum will exhibit a
Lorentz-violating directional dependence. Using data on emission from the Crab
nebula, we can set a bound on a particular combination of Lorentz-violating
coefficients at the level.Comment: 14 page
Gas morphology and energetics at the surface of PDRs: New insights with Herschel observations of NGC 7023
Context. We investigate the physics and chemistry of the gas and dust in dense photon-dominated regions (PDRs), along with their dependence on the illuminating UV field.
Aims. Using Herschel/HIFI observations, we study the gas energetics in NGC 7023 in relation to the morphology of this nebula. NGC 7023 is the prototype of a PDR illuminated by a B2V star and is one of the key targets of Herschel.
Methods. Our approach consists in determining the energetics of the region by combining the information carried by the mid-IR spectrum (extinction by classical grains, emission from very small dust particles) with that of the main gas coolant lines. In this letter, we discuss more specifically the intensity and line profile of the 158 μm (1901 GHz) [C ii] line measured by HIFI and provide information on the emitting gas.
Results. We show that both the [C ii] emission and the mid-IR emission from polycyclic aromatic hydrocarbons (PAHs) arise from the regions located in the transition zone between atomic and molecular gas. Using the Meudon PDR code and a simple transfer model, we find good agreement between the calculated and observed [C ii] intensities.
Conclusions. HIFI observations of NGC 7023 provide the opportunity to constrain the energetics at the surface of PDRs. Future work will include analysis of the main coolant line [O i] and use of a new PDR model that includes PAH-related species
Shiga toxin production and translocation during microaerobic human colonic infection with Shiga toxin-producing E. coli O157:H7 and O104:H4
Haemolytic uraemic syndrome caused by Shiga toxin-producing E. coli (STEC) is dependent on release of Shiga toxins (Stxs) during intestinal infection and subsequent absorption into the bloodstream. An understanding of Stx-related events in the human gut is limited due to lack of suitable experimental models. In this study, we have used a vertical diffusion chamber system with polarized human colon carcinoma cells to simulate the microaerobic (MA) environment in the human intestine and investigate its influence on Stx release and translocation during STEC O157:H7 and O104:H4 infection. Stx2 was the major toxin type released during infection. Whereas microaerobiosis significantly reduced bacterial growth as well as Stx production and release into the medium, Stx translocation across the epithelial monolayer was enhanced under MA versus aerobic conditions. Increased Stx transport was dependent on STEC infection and occurred via a transcellular pathway other than macropinocytosis. While MA conditions had a similar general effect on Stx release and absorption during infection with STEC O157:H7 and O104:H4, both serotypes showed considerable differences in colonization, Stx production, and Stx translocation which suggest alternative virulence strategies. Taken together, our study suggests that the MA environment in the human colon may modulate Stx-related events and enhance Stx absorption during STEC infection
Nonaxisymmetric Evolution of Magnetically Subcritical Clouds: Bar Growth, Core Elongation, and Binary Formation
We have begun a systematic numerical study of the nonlinear growth of
nonaxisymmetric perturbations during the ambipolar diffusion-driven evolution
of initially magnetically subcritical molecular clouds, with an eye on the
formation of binaries, multiple stellar systems and small clusters. In this
initial study, we focus on the (or bar) mode, which is shown to be
unstable during the dynamic collapse phase of cloud evolution after the central
region has become magnetically supercritical. We find that, despite the
presence of a strong magnetic field, the bar can grow fast enough that for a
modest initial perturbation (at 5% level) a large aspect ratio is obtained
during the isothermal phase of cloud collapse. The highly elongated bar is
expected to fragment into small pieces during the subsequent adiabatic phase.
Our calculations suggest that the strong magnetic fields observed in some
star-forming clouds and envisioned in the standard picture of single star
formation do not necessarily suppress bar growth and fragmentation; on the
contrary, they may actually promote these processes, by allowing the clouds to
have more than one (thermal) Jeans mass to begin with without collapsing
promptly. Nonlinear growth of the bar mode in a direction perpendicular to the
magnetic field, coupled with flattening along field lines, leads to the
formation of supercritical cores that are triaxial in general. It removes a
longstanding objection to the standard scenario of isolated star formation
involving subcritical magnetic field and ambipolar diffusion based on the
likely prolate shape inferred for dense cores. Continuted growth of the bar
mode in already elongated starless cores, such as L1544, may lead to future
binary and multiple star formation.Comment: 5 pages, 2 figures, accepted by ApJ
- …
