206 research outputs found

    Theory for Phase Transitions in Insulating Vanadium Oxide

    Full text link
    We show that the recently proposed S=2 bond model with orbital degrees of freedom for insulating V2_{2}O3_{3} not only explains the anomalous magnetic ordering, but also other mysteries of the magnetic phase transition. The model contains an additional orbital degree of freedom that exhibits a zero temperature quantum phase transtion in the Ising universality class.Comment: 5 pages, 2 figure

    Electronic structure of GdN, and the influence of exact exchange

    Full text link
    GdN bulk is studied with the local density approximation, on the Hartree-Fock level, and on the level of the hybrid functional B3LYP. A local basis set formalism is used, as implemented in the present CRYSTAL06 release. It is demonstrated that the code is technically capable of treating this system with its 4f electrons explicitly, i.e. out of the core. The band structure at the level of the local density approximation is in good agreement with earlier calculations and is found to be half-metallic. The Hartree-Fock band structure is insulating with a large gap. Interestingly, three solutions were found at the B3LYP level. The lowest of them is insulating for majority spin, and the Fermi surface for minority spin consists only of points, resulting in a very low density of states around the Fermi level.Comment: to appear in J. Phys.: Condensed Matte

    Pressure-tuning of the c-f hybridization in Yb metal detected by infrared spectroscopy up to 18 GPa

    Full text link
    It has been known that the elemental Yb, a divalent metal at mbient pressure, becomes a mixed-valent metal under external pressure, with its valence reaching ~2.6 at 30 GPa. In this work, infrared spectroscopy has been used to probe the evolution of microscopic electronic states associated with the valence crossover in Yb at external pressures up to 18 GPa. The measured infrared reflectivity spectrum R(w) of Yb has shown large variations with pressure. In particular, R(w) develops a deep minimum in the mid-infrared, which shifts to lower energy with increasing pressure. The dip is attributed to optical absorption due to a conduction c-f electron hybridization state, similarly to those previously observed for heavy fermion compounds. The red shift of the dip indicates that the cc-ff hybridization decreases with pressure, which is consistent with the increase of valence.Comment: 2 pages, to appear in J. Phys. Soc. Jpn. Supp

    Plaquette Ordering in SU(4) Antiferromagnets

    Full text link
    We use fermion mean field theory to study possible plaquette ordering in the antiferromagnetic SU(4) Heisenberg model. We find the ground state for both the square and triangular lattices to be the disconnected plaquette state. Our mean field theory gives a first order transition for plaquette ordering for the triangular lattice. Our results suggest a large number of low lying states.Comment: 16 pages, 5 figure

    Orbitally Degenerate Spin-1 Model for Insulating V2O3

    Full text link
    Motivated by recent neutron, X-ray absorption and resonant scattering experiments, we revisit the electronic structure of V2O3. We propose a model in which S=1 V3+ ions are coupled in the vertical V-V pairs forming two-fold orbitally degenerate configurations with S=2. Ferro-orbital ordering of the V-V pairs gives a description which is consistent with all experiments in the antiferromagnetic insulating phase.Comment: 4 pages, including three figure

    Magneto-x-ray effects in transition-metal alloys

    Get PDF
    We present a theory that combines the relativistic spin-polarized version of the Koringa-Kohn-Rostoker coherent-potential approximation theory and the macroscopic theory of magneto-optical effects enabling us to calculate magneto-x-ray effects from first principles. The theory is illustrated by calculation of Faraday and Kerr rotations and ellipticities for transition-metal alloys

    Electronic Structure and Phase Transition in V2O3: Importance of 3d Spin-Orbit Interaction and Lattice Distortion

    Full text link
    The 3d electronic structure and phase transition in pure and Cr doped V2O3 are theoretically investigated in relation to the 3d spin-orbit interaction and lattice distortion. A model consisting of the nearest-neighbor V ion pair with full degeneracy of the 3d orbitals is studied within the many-body point of view. It is shown that each V ion with S=1 spin state has a large orbital magnetic moment 0.7μB\sim 0.7 \mu_{\rm B} and no orbital ordering occurs in the antiferromagnetic insulating (AFI) phase. The anomalous resonant Bragg reflection found in the AFI phase is attributed to the magnetic ordering. In the AFI and paramagnetic insulating (PI) phases, Jahn-Teller like lattice instability leads to tilting of the V ion pairs from the corundum c-axis and this causes large difference in the orbital occupation between the paramagnetic metal and the insulating phases, which is consistent with linear dichroic V 2p XAS measurements. To understand the AFI to PI transition, a model spin Hamiltonian is also proposed. The transition is found to be simultaneous order-disorder transition of the magnetic moments and tilting directions of the V ion pairs. Softening of elastic constant C44 and abrupt change in short range spin correlations observed at the transition are also explained.Comment: 18 pages, 16 figure

    Zero temperature metal-insulator transition in the infinite-dimensional Hubbard model

    Full text link
    The zero temperature transition from a paramagnetic metal to a paramagnetic insulator is investigated in the Dynamical Mean Field Theory for the Hubbard model. The self-energy of the effective impurity Anderson model (on which the Hubbard model is mapped) is calculated using Wilson's Numerical Renormalization Group method. Results for quasiparticle weight, spectral function and self-energy are discussed for Bethe and hypercubic lattice. In both cases, the metal-insulator transition is found to occur via the vanishing of a quasiparticle resonance which appears to be isolated from the Hubbard bands.Comment: 4 pages, 3 eps-figures include

    Ground State and Excitations of Spin Chain with Orbital Degeneracy

    Full text link
    The one dimensional Heisenberg model in the presence of orbital degeneracy is studied at the SU(4) symmetric viewpoint by means of Bethe ansatz. Following Sutherland's previous work on an equivalent model, we discuss the ground state and the low-lying excitations more extensively in connection to the spin systems with orbital degeneracy. We show explicitly that the ground state is a SU(4) singlet. We study the degeneracies of the elementary excitations and the spectra of the generalized magnons consisting of these excitations. We also discuss the complex 2-strings in the context of the Bethe ansatz solutions.Comment: Revtex, 9 pages, 3 figures; typos correcte

    Incommensurate magnetic structure of CeRhIn5

    Full text link
    The magnetic structure of the heavy fermion antiferromagnet CeRhIn5 is determined using neutron diffraction. We find a magnetic wave vector q_M=(1/2,1/2,0.297), which is temperature independent up to T_N=3.8K. A staggered moment of 0.374(5) Bohr magneton at 1.4K, residing on the Ce ion, spirals transversely along the c axis. The nearest neighbor moments on the tetragonal basal plane are aligned antiferromagnetically.Comment: 4 pages, 4 figures There was an extra factor of 2 in Eq (2). This affects the value of staggered moment. The correct staggered moment is 0.374(5) Bohr magneton at 1.4
    corecore