2,079 research outputs found
Statistics of Largest Loops in a Random Walk
We report further findings on the size distribution of the largest neutral
segments in a sequence of N randomly charged monomers [D. Ertas and Y. Kantor,
Phys. Rev. E53, 846 (1996); cond-mat/9507005]. Upon mapping to one--dimensional
random walks (RWs), this corresponds to finding the probability distribution
for the size L of the largest segment that returns to its starting position in
an N--step RW. We primarily focus on the large N, \ell = L/N << 1 limit, which
exhibits an essential singularity. We establish analytical upper and lower
bounds on the probability distribution, and numerically probe the distribution
down to \ell \approx 0.04 (corresponding to probabilities as low as 10^{-15})
using a recursive Monte Carlo algorithm. We also investigate the possibility of
singularities at \ell=1/k for integer k.Comment: 5 pages and 4 eps figures, requires RevTeX, epsf and multicol.
Postscript file also available at
http://cmtw.harvard.edu/~deniz/publications.htm
A Model Ground State of Polyampholytes
The ground state of randomly charged polyampholytes is conjectured to have a
structure similar to a necklace, made of weakly charged parts of the chain,
compacting into globules, connected by highly charged stretched `strings'. We
suggest a specific structure, within the necklace model, where all the neutral
parts of the chain compact into globules: The longest neutral segment compacts
into a globule; in the remaining part of the chain, the longest neutral segment
(the 2nd longest neutral segment) compacts into a globule, then the 3rd, and so
on. We investigate the size distributions of the longest neutral segments in
random charge sequences, using analytical and Monte Carlo methods. We show that
the length of the n-th longest neutral segment in a sequence of N monomers is
proportional to N/(n^2), while the mean number of neutral segments increases as
sqrt(N). The polyampholyte in the ground state within our model is found to
have an average linear size proportional to sqrt(N), and an average surface
area proportional to N^(2/3).Comment: 8 two-column pages. 5 eps figures. RevTex. Submitted to Phys. Rev.
Belief Systems and Illness Experiences: The Case of Non-Medical Healing Groups
An important, and often neglected, aspect of the illness experience is meaning—that is, how affected persons make sense of their experiences. Responses to illness, coping strategies, and the healing process itself are all shaped by the meanings people apply to their illnesses. This chapter examines some of the nonmedical approaches to illness used by middle-class suburbanites in order to highlight the importance of meaning in all illness experiences. The particular interpretations applied in these alter-. native healing systems vary, but the way these interpretive frameworks shape the illness experience sheds light on the broader significance of meaning in health, illness, and healing
Theta-point universality of polyampholytes with screened interactions
By an efficient algorithm we evaluate exactly the disorder-averaged
statistics of globally neutral self-avoiding chains with quenched random charge
in monomer i and nearest neighbor interactions on
square (22 monomers) and cubic (16 monomers) lattices. At the theta transition
in 2D, radius of gyration, entropic and crossover exponents are well compatible
with the universality class of the corresponding transition of homopolymers.
Further strong indication of such class comes from direct comparison with the
corresponding annealed problem. In 3D classical exponents are recovered. The
percentage of charge sequences leading to folding in a unique ground state
approaches zero exponentially with the chain length.Comment: 15 REVTEX pages. 4 eps-figures . 1 tabl
A Census Of Highly Symmetric Combinatorial Designs
As a consequence of the classification of the finite simple groups, it has
been possible in recent years to characterize Steiner t-designs, that is
t-(v,k,1) designs, mainly for t = 2, admitting groups of automorphisms with
sufficiently strong symmetry properties. However, despite the finite simple
group classification, for Steiner t-designs with t > 2 most of these
characterizations have remained longstanding challenging problems. Especially,
the determination of all flag-transitive Steiner t-designs with 2 < t < 7 is of
particular interest and has been open for about 40 years (cf. [11, p. 147] and
[12, p. 273], but presumably dating back to 1965). The present paper continues
the author's work [20, 21, 22] of classifying all flag-transitive Steiner
3-designs and 4-designs. We give a complete classification of all
flag-transitive Steiner 5-designs and prove furthermore that there are no
non-trivial flag-transitive Steiner 6-designs. Both results rely on the
classification of the finite 3-homogeneous permutation groups. Moreover, we
survey some of the most general results on highly symmetric Steiner t-designs.Comment: 26 pages; to appear in: "Journal of Algebraic Combinatorics
Effects of Self-Avoidance on the Tubular Phase of Anisotropic Membranes
We study the tubular phase of self-avoiding anisotropic membranes. We discuss
the renormalizability of the model Hamiltonian describing this phase and derive
from a renormalization group equation some general scaling relations for the
exponents of the model. We show how particular choices of renormalization
factors reproduce the Gaussian result, the Flory theory and the Gaussian
Variational treatment of the problem. We then study the perturbative
renormalization to one loop in the self-avoiding parameter using dimensional
regularization and an epsilon-expansion about the upper critical dimension, and
determine the critical exponents to first order in epsilon.Comment: 19 pages, TeX, uses Harvmac. Revised Title and updated references: to
appear in Phys. Rev.
THERMODYNAMICS OF A BROWNIAN BRIDGE POLYMER MODEL IN A RANDOM ENVIRONMENT
We consider a directed random walk making either 0 or moves and a
Brownian bridge, independent of the walk, conditioned to arrive at point on
time . The Hamiltonian is defined as the sum of the square of increments of
the bridge between the moments of jump of the random walk and interpreted as an
energy function over the bridge connfiguration; the random walk acts as the
random environment. This model provides a continuum version of a model with
some relevance to protein conformation. The thermodynamic limit of the specific
free energy is shown to exist and to be self-averaging, i.e. it is equal to a
trivial --- explicitly computed --- random variable. An estimate of the
asymptotic behaviour of the ground state energy is also obtained.Comment: 20 pages, uuencoded postscrip
Ground States of Two-Dimensional Polyampholytes
We perform an exact enumeration study of polymers formed from a (quenched)
random sequence of charged monomers , restricted to a 2-dimensional
square lattice. Monomers interact via a logarithmic (Coulomb) interaction. We
study the ground state properties of the polymers as a function of their excess
charge for all possible charge sequences up to a polymer length N=18. We
find that the ground state of the neutral ensemble is compact and its energy
extensive and self-averaging. The addition of small excess charge causes an
expansion of the ground state with the monomer density depending only on .
In an annealed ensemble the ground state is fully stretched for any excess
charge .Comment: 6 pages, 6 eps figures, RevTex, Submitted to Phys. Rev.
- …