2,079 research outputs found

    Statistics of Largest Loops in a Random Walk

    Full text link
    We report further findings on the size distribution of the largest neutral segments in a sequence of N randomly charged monomers [D. Ertas and Y. Kantor, Phys. Rev. E53, 846 (1996); cond-mat/9507005]. Upon mapping to one--dimensional random walks (RWs), this corresponds to finding the probability distribution for the size L of the largest segment that returns to its starting position in an N--step RW. We primarily focus on the large N, \ell = L/N << 1 limit, which exhibits an essential singularity. We establish analytical upper and lower bounds on the probability distribution, and numerically probe the distribution down to \ell \approx 0.04 (corresponding to probabilities as low as 10^{-15}) using a recursive Monte Carlo algorithm. We also investigate the possibility of singularities at \ell=1/k for integer k.Comment: 5 pages and 4 eps figures, requires RevTeX, epsf and multicol. Postscript file also available at http://cmtw.harvard.edu/~deniz/publications.htm

    A Model Ground State of Polyampholytes

    Full text link
    The ground state of randomly charged polyampholytes is conjectured to have a structure similar to a necklace, made of weakly charged parts of the chain, compacting into globules, connected by highly charged stretched `strings'. We suggest a specific structure, within the necklace model, where all the neutral parts of the chain compact into globules: The longest neutral segment compacts into a globule; in the remaining part of the chain, the longest neutral segment (the 2nd longest neutral segment) compacts into a globule, then the 3rd, and so on. We investigate the size distributions of the longest neutral segments in random charge sequences, using analytical and Monte Carlo methods. We show that the length of the n-th longest neutral segment in a sequence of N monomers is proportional to N/(n^2), while the mean number of neutral segments increases as sqrt(N). The polyampholyte in the ground state within our model is found to have an average linear size proportional to sqrt(N), and an average surface area proportional to N^(2/3).Comment: 8 two-column pages. 5 eps figures. RevTex. Submitted to Phys. Rev.

    Belief Systems and Illness Experiences: The Case of Non-Medical Healing Groups

    Get PDF
    An important, and often neglected, aspect of the illness experience is meaning—that is, how affected persons make sense of their experiences. Responses to illness, coping strategies, and the healing process itself are all shaped by the meanings people apply to their illnesses. This chapter examines some of the nonmedical approaches to illness used by middle-class suburbanites in order to highlight the importance of meaning in all illness experiences. The particular interpretations applied in these alter-. native healing systems vary, but the way these interpretive frameworks shape the illness experience sheds light on the broader significance of meaning in health, illness, and healing

    Theta-point universality of polyampholytes with screened interactions

    Full text link
    By an efficient algorithm we evaluate exactly the disorder-averaged statistics of globally neutral self-avoiding chains with quenched random charge qi=±1q_i=\pm 1 in monomer i and nearest neighbor interactions qiqj\propto q_i q_j on square (22 monomers) and cubic (16 monomers) lattices. At the theta transition in 2D, radius of gyration, entropic and crossover exponents are well compatible with the universality class of the corresponding transition of homopolymers. Further strong indication of such class comes from direct comparison with the corresponding annealed problem. In 3D classical exponents are recovered. The percentage of charge sequences leading to folding in a unique ground state approaches zero exponentially with the chain length.Comment: 15 REVTEX pages. 4 eps-figures . 1 tabl

    A Census Of Highly Symmetric Combinatorial Designs

    Full text link
    As a consequence of the classification of the finite simple groups, it has been possible in recent years to characterize Steiner t-designs, that is t-(v,k,1) designs, mainly for t = 2, admitting groups of automorphisms with sufficiently strong symmetry properties. However, despite the finite simple group classification, for Steiner t-designs with t > 2 most of these characterizations have remained longstanding challenging problems. Especially, the determination of all flag-transitive Steiner t-designs with 2 < t < 7 is of particular interest and has been open for about 40 years (cf. [11, p. 147] and [12, p. 273], but presumably dating back to 1965). The present paper continues the author's work [20, 21, 22] of classifying all flag-transitive Steiner 3-designs and 4-designs. We give a complete classification of all flag-transitive Steiner 5-designs and prove furthermore that there are no non-trivial flag-transitive Steiner 6-designs. Both results rely on the classification of the finite 3-homogeneous permutation groups. Moreover, we survey some of the most general results on highly symmetric Steiner t-designs.Comment: 26 pages; to appear in: "Journal of Algebraic Combinatorics

    Effects of Self-Avoidance on the Tubular Phase of Anisotropic Membranes

    Get PDF
    We study the tubular phase of self-avoiding anisotropic membranes. We discuss the renormalizability of the model Hamiltonian describing this phase and derive from a renormalization group equation some general scaling relations for the exponents of the model. We show how particular choices of renormalization factors reproduce the Gaussian result, the Flory theory and the Gaussian Variational treatment of the problem. We then study the perturbative renormalization to one loop in the self-avoiding parameter using dimensional regularization and an epsilon-expansion about the upper critical dimension, and determine the critical exponents to first order in epsilon.Comment: 19 pages, TeX, uses Harvmac. Revised Title and updated references: to appear in Phys. Rev.

    THERMODYNAMICS OF A BROWNIAN BRIDGE POLYMER MODEL IN A RANDOM ENVIRONMENT

    Full text link
    We consider a directed random walk making either 0 or +1+1 moves and a Brownian bridge, independent of the walk, conditioned to arrive at point bb on time TT. The Hamiltonian is defined as the sum of the square of increments of the bridge between the moments of jump of the random walk and interpreted as an energy function over the bridge connfiguration; the random walk acts as the random environment. This model provides a continuum version of a model with some relevance to protein conformation. The thermodynamic limit of the specific free energy is shown to exist and to be self-averaging, i.e. it is equal to a trivial --- explicitly computed --- random variable. An estimate of the asymptotic behaviour of the ground state energy is also obtained.Comment: 20 pages, uuencoded postscrip

    Ground States of Two-Dimensional Polyampholytes

    Full text link
    We perform an exact enumeration study of polymers formed from a (quenched) random sequence of charged monomers ±q0\pm q_0, restricted to a 2-dimensional square lattice. Monomers interact via a logarithmic (Coulomb) interaction. We study the ground state properties of the polymers as a function of their excess charge QQ for all possible charge sequences up to a polymer length N=18. We find that the ground state of the neutral ensemble is compact and its energy extensive and self-averaging. The addition of small excess charge causes an expansion of the ground state with the monomer density depending only on QQ. In an annealed ensemble the ground state is fully stretched for any excess charge Q>0Q>0.Comment: 6 pages, 6 eps figures, RevTex, Submitted to Phys. Rev.
    corecore