212 research outputs found
Investigation of laser ablated ZnO thin films grown with Zn metal target: a structural study
High quality ZnO thin films were gown using the pulsed laser deposition
technique on (0001) AlO substrates in an oxidizing atmosphere, using a
Zn metallic target. We varied the growth conditions such as the deposition
temperature and the oxygen pressure. First, using a battery of techniques such
as x-rays diffraction, Rutherford Backscattering spectroscopy and atomic force
microscopy, we evaluated the structural quality, the stress and the degree of
epitaxy of the films. Second, the relations between the deposition conditions
and the structural properties, that are directly related to the nature of the
thin films, are discussed qualitatively. Finally, a number of issues on how to
get good-quality ZnO films are addressed.Comment: To be published in Jour. Appl. Phys. (15 August 2004
Nearly strain-free heteroepitaxial system for fundamental studies of pulsed laser deposition: EuTiO3 on SrTiO3
High quality epitaxial thin-films of EuTiO3 have been grown on the (001)
surface of SrTiO3 using pulsed laser deposition. In situ x-ray reflectivity
measurements reveal that the growth is two-dimensional and enable real-time
monitoring of the film thickness and roughness during growth. The film
thickness, surface mosaic, surface roughness, and strain were characterized in
detail using ex situ x-ray diffraction. The thicnkess and composition were
confirmed with Rutherford Backscattering. The EuTiO3 films grow
two-dimensionally, epitaxially, pseudomorphically, with no measurable in-plane
lattice mismatch.Comment: 7 pages, 6 figure
In-situ fabrication of cobalt-doped SrFe2As2 thin films by using pulsed laser deposition with excimer laser
The remarkably high superconducting transition temperature and upper critical
field of iron(Fe)-based layered superconductors, despite ferromagnetic material
base, open the prospect for superconducting electronics. However, success in
superconducting electronics has been limited because of difficulties in
fabricating high-quality thin films. We report the growth of high-quality
c-axis-oriented cobalt(Co)-doped SrFe2As2 thin films with bulk
superconductivity by using an in-situ pulsed laser deposition technique with a
248-nm-wavelength KrF excimer laser and an arsenic(As)-rich phase target. The
temperature and field dependences of the magnetization showing strong
diamagnetism and transport critical current density with superior Jc-H
performance are reported. These results provide necessary information for
practical applications of Fe-based superconductors.Comment: 8 pages, 3figures. to be published at Appl. Phys. Let
Rate Equations and Scaling in Pulsed Laser Deposition
We study a simplified model for pulsed laser deposition [Phys. Rev. Lett.
{\bf 87}, 135701 (2001)] by rate equations. We consider a set of equations,
where islands are assumed to be point-like, as well as an improved one that
takes the size of the islands into account. The first set of equations is
solved exactly but its predictive power is restricted to a few pulses. The
improved set of equations is integrated numerically, is in excellent agreement
with simulations, and fully accounts for the crossover from continuous to
pulsed deposition. Moreover, we analyze the scaling of the nucleation density
and show numerical results indicating that a previously observed logarithmic
scaling does not apply.Comment: 8 pages, 9 figure
Generalized Smoluchowski equation with correlation between clusters
In this paper we compute new reaction rates of the Smoluchowski equation
which takes into account correlations. The new rate K = KMF + KC is the sum of
two terms. The first term is the known Smoluchowski rate with the mean-field
approximation. The second takes into account a correlation between clusters.
For this purpose we introduce the average path of a cluster. We relate the
length of this path to the reaction rate of the Smoluchowski equation. We solve
the implicit dependence between the average path and the density of clusters.
We show that this correlation length is the same for all clusters. Our result
depends strongly on the spatial dimension d. The mean-field term KMFi,j = (Di +
Dj)(rj + ri)d-2, which vanishes for d = 1 and is valid up to logarithmic
correction for d = 2, is the usual rate found with the Smoluchowski model
without correlation (where ri is the radius and Di is the diffusion constant of
the cluster). We compute a new rate: the correlation rate K_{i,j}^{C}
(D_i+D_j)(r_j+r_i)^{d-1}M{\big(\frac{d-1}{d_f}}\big) is valid for d \leq
1(where M(\alpha) = \sum+\infty i=1i\alphaNi is the moment of the density of
clusters and df is the fractal dimension of the cluster). The result is valid
for a large class of diffusion processes and mass radius relations. This
approach confirms some analytical solutions in d 1 found with other methods. We
also show Monte Carlo simulations which illustrate some exact new solvable
models
High Temperature Thermopower in La_{2/3}Ca_{1/3}MnO_3 Films: Evidence for Polaronic Transport
Thermoelectric power, electrical resistivity and magnetization experiments,
performed in the paramagnetic phase of La_{2/3}Ca_{1/3}MnO_3, provide evidence
for polaron-dominated conduction in CMR materials. At high temperatures, a
large, nearly field-independent difference between the activation energies for
resistivity (rho) and thermopower (S), a characteristic of Holstein Polarons,
is observed, and ln(rho) ceases to scale with the magnetization. On approaching
T_c, both energies become field-dependent, indicating that the polarons are
magnetically polarized. Below T_c, the thermopower follows a law S(H) prop.
1/rho (H) as in non saturated ferromagnetic metals.Comment: 10 pages, 5 .gif figures. Phys. Rev B (in press
The influence of Ga-irradiation on the transport properties of mesoscopic conducting thin films
We studied the influence of 30keV Ga-ions -- commonly used in focused ion
beam (FIB) devices -- on the transport properties of thin crystalline graphite
flake, LaCaMnO and Co thin films. The changes of the
electrical resistance were measured in-situ during irradiation and also the
temperature and magnetic field dependence before and after irradiation. Our
results show that the transport properties of these materials strongly change
at Ga fluences much below those used for patterning and ion beam induced
deposition (IBID), limiting seriously the use of FIB when the intrinsic
properties of the materials of interest are of importance. We present a method
that can be used to protect the sample as well as to produce selectively
irradiation-induced changes.Comment: 14 pages, 11 figures, will be published in Nanotechnology 201
- …