2,014 research outputs found

    Natural Supersymmetry and Implications for Higgs physics

    Full text link
    We re-analyze the LHC bounds on light third generation squarks in Natural Supersymmetry, where the sparticles have masses inversely proportional to their leading-log contributions to the electroweak symmetry breaking scale. Higgsinos are the lightest supersymmetric particles; top and bottom squarks are the next-to-lightest sparticles that decay into both neutral and charged Higgsinos with well-defined branching ratios determined by Yukawa couplings and kinematics. The Higgsinos are nearly degenerate in mass, once the bino and wino masses are taken to their natural (heavy) values. We consider three scenarios for the stop and sbottom masses: (I) t~R\tilde{t}_R is light, (II) t~L\tilde{t}_L and b~L\tilde{b}_L are light, and (III) t~R\tilde{t}_R, t~L\tilde{t}_L, and b~L\tilde{b}_L are light. Dedicated stop searches are currently sensitive to Scenarios II and III, but not Scenario I. Sbottom-motivated searches (2b+MET2 b + \rm{MET}) impact both squark flavors due to \tilde{t} \ra b \charp_1 as well as \tilde{b} \ra b \neut_{1,2}, constraining Scenarios I and III with somewhat weaker constraints on Scenario II. The totality of these searches yield relatively strong constraints on Natural Supersymmetry. Two regions that remain are: (1) the "compressed wedge", where (mq~−∣μ∣)/mq~≪1(m_{\tilde{q}} - |\mu|)/m_{\tilde{q}} \ll 1, and (2) the "kinematic limit" region, where m_{\tilde{q}} \gsim 600-750 GeV, at the kinematic limit of the LHC searches. We calculate the correlated predictions for Higgs physics, demonstrating that these regions lead to distinct predictions for the lightest Higgs couplings that are separable with \simeq 10% measurements. We show that these conclusions remain largely unchanged once the MSSM is extended to the NMSSM in order to naturally obtain a large enough mass for the lightest Higgs boson consistent with LHC data.Comment: 18 pages, 8 figure

    Adjusted Empirical Likelihood for Long-memory Time Series Models

    Full text link
    Empirical likelihood method has been applied to short-memory time series models by Monti (1997) through the Whittle's estimation method. Yau (2012) extended this idea to long-memory time series models. Asymptotic distributions of the empirical likelihood ratio statistic for short and long-memory time series have been derived to construct confidence regions for the corresponding model parameters. However, computing profile empirical likelihood function involving constrained maximization does not always have a solution which leads to several drawbacks. In this paper, we propose an adjusted empirical likelihood procedure to modify the one proposed by Yau (2012) for autoregressive fractionally integrated moving average (ARFIMA) model. It guarantees the existence of a solution to the required maximization problem as well as maintains same asymptotic properties obtained by Yau (2012). Simulations have been carried out to illustrate that the adjusted empirical likelihood method for different long-time series models provides better confidence regions and coverage probabilities than the unadjusted ones, especially for small sample sizes

    Quasi-equilibrium optical nonlinearities in spin-polarized GaAs

    Full text link
    Semiconductor Bloch equations, which microscopically describe the dynamics of a Coulomb interacting, spin-unpolarized electron-hole plasma, can be solved in two limits: the coherent and the quasi-equilibrium regime. These equations have been recently extended to include the spin degree of freedom, and used to explain spin dynamics in the coherent regime. In the quasi-equilibrium limit, one solves the Bethe-Salpeter equation in a two-band model to describe how optical absorption is affected by Coulomb interactions within a spin-unpolarized plasma of arbitrary density. In this work, we modified the solution of the Bethe-Salpeter equation to include spin-polarization and light holes in a three-band model, which allowed us to account for spin-polarized versions of many-body effects in absorption. The calculated absorption reproduced the spin-dependent, density-dependent and spectral trends observed in bulk GaAs at room temperature, in a recent pump-probe experiment with circularly polarized light. Hence our results may be useful in the microscopic modelling of density-dependent optical nonlinearities in spin-polarized semiconductors.Comment: 7 pages, 6 figure

    Big data in nephrology-a time to rethink

    Get PDF

    Hypertension Treatment for Patients with Advanced Chronic Kidney Disease

    Get PDF
    Chronic kidney disease is common and frequently complicated with hypertension. As a major modifiable risk factor for cardiovascular disease in this high risk population, treatment of hypertension in chronic kidney disease is of paramount importance. We review the epidemiology and pathogenesis of hypertension in chronic kidney disease and then update the latest study results for treatment including salt restriction, invasive endovascular procedures, and pharmacologic therapy. Recent trials draw into question the efficacy of renal artery stenting or renal denervation for hypertension in chronic kidney disease, as well as renin-angiotensin-aldosterone system blockade as first line therapy of hypertension in end stage renal disease. Positive trial results reemphasize salt restriction and challenge the prevailing prejudice against the use of thiazide-like diuretics in advanced chronic kidney disease. Lastly, clinical practice guidelines are trending away from recommending tight blood pressure control in chronic kidney disease
    • …
    corecore