51 research outputs found

    Plume-lithosphere interaction, and the formation of fibrous diamonds

    Get PDF
    This work was financially supported though a JSPS international research fellowship PE 14721 (to MWB) and JSPS KAKENHI grant numbers JP 26287139 and JP15KK0150 (to HS). The work of DAZ and ALR was supported by Russian science foundation (16-17-10067). RB acknowledges funding from the NERC (NE/M000427/1). SM acknowledges funding from the NERC (NE/PO12167/1).Fluid inclusions in diamond provide otherwise inaccessible information on the origin and nature of carbonaceous fluid(s) in the mantle. Here we evaluate the role of subducted volatiles in diamond formation within the Siberian cratonic lithosphere. Specifically, we focus on the halogen (Cl, Br and I) and noble gas (He, Ne and Ar) geochemistry of fluids trapped within cubic, coated and cloudy fibrous diamonds from the Nyurbinskaya kimberlite, Siberia. Our data show Br/Cl and I/Cl ratios consistent with involvement of altered oceanic crust, suggesting subduction-derived fluids have infiltrated the Siberian lithosphere. 3He/4He ranging from 2 to 11 RA, indicates the addition of a primordial mantle component to the SCLM. Mantle plumes may therefore act as a trigger to re-mobilise subducted carbon-rich fluids from the sub-continental lithospheric mantle, and we argue this may be an essential process in the formation of fluid-rich diamonds, and kimberlitic magmatism.Publisher PDFPeer reviewe

    Micro-Raman Spectroscopy Assessment of Chemical Compounds of Mantle Clinopyroxenes

    No full text
    The composition of clinopyroxenes is indicative for chemical and physical properties of mantle substrates. In this study, we present the results of Raman spectroscopy examination of clinopyroxene inclusions in natural diamonds (n = 51) and clinopyroxenes from mantle xenoliths of peridotites and eclogites from kimberlites (n = 28). The chemical composition of studied clinopyroxenes shows wide variations indicating their origin in different mantle lithologies. All clinopyroxenes have intense Raman modes corresponding to metal-oxygen translation (~300–500 cm−1), stretching vibrations of bridging O-Si-Obr (ν11~670 cm−1), and nonbridging atoms O-Si-Onbr (ν16~1000 cm−1). The peak position of the stretching vibration mode (ν11) for the studied clinopyroxenes varies in a wide range (23 cm−1) and generally correlates with their chemical composition and reflects the diopside-jadeite heterovalent isomorphism. These correlations may be used for rough estimation of these compounds using the non-destructive Raman spectroscopy technique

    Carbonate-silicate composition of diamond-forming media of fibrous diamonds from the Snap Lake area (Canada)

    No full text
    This study presents new data on the compositions of microinclusions in fibrous diamonds from the Snap Lake area in the eastern part of the Slave Craton (Canada). The compositional trends of diamond microinclusions are consistent with those of diamond-forming media ranging continuously between a highly carbonatitic endmember and a highly silicic endmember. The microinclusions exhibit general enrichment of most incompatible elements, which is probably indicative of their crystallization during partial melting of mantle peridotites and eclogites. Our results also suggest that the diamond analyzed in this study may have formed as a result of interaction between carbonate-silicate melts and peridotitic wall-rocks at the base of a thick lithospheric mantle at depths below 300 km. The trace element distributions in the studied diamond microinclusions show a general similarity to those previously found in the parental kimberlites and carbonatites. These data suggest that diamonds may have crystallized either directly from a kimberlitic/carbonatitic melt or from a proto-kimberlitic fluid/melt, which was derived from a source also common to kimberlites. This is supported by differences in the major element compositions of diamond-forming fluids/melts and kimberlites.4 page(s

    Lithos

    No full text
    • …
    corecore