7,818 research outputs found

    Probing the geometry and motion of AGN coronae through accretion disc emissivity profiles

    Get PDF
    To gain a better understanding of the inner disc region that comprises active galactic nuclei it is necessary to understand the pattern in which the disc is illuminated (the emissivity profile) by X-rays emitted from the continuum source above the black hole (corona). The differences in the emissivity profiles produced by various corona geometries are explored via general relativistic ray tracing simulations. Through the analysis of various parameters of the geometries simulated it is found that emissivity profiles produced by point source and extended geometries such as cylindrical slabs and spheroidal coronae placed on the accretion disc are distinguishable. Profiles produced by point source and conical geometries are not significantly different, requiring an analysis of reflection fraction to differentiate the two geometries. Beamed point and beamed conical sources are also simulated in an effort to model jet-like coronae, though the differences here are most evident in the reflection fraction. For a point source we determine an approximation for the measured reflection fraction with the source height and velocity. Simulating spectra from the emissivity profiles produced by the various geometries produce distinguishable differences. Overall spectral differences between the geometries do not exceed 15 per cent in the most extreme cases. It is found that emissivity profiles can be useful in distinguishing point source and extended geometries given high quality spectral data of extreme, bright sources over long exposure times. In combination with reflection fraction, timing, and spectral analysis we may use emissivity profiles to discern the geometry of the X-ray source.Comment: 15 pages, 12 figures. Accepted for publication in MNRA

    Caught in the act: Measuring the changes in the corona that cause the extreme variability of 1H 0707-495

    Get PDF
    The X-ray spectra of the narrow line Seyfert 1 galaxy, 1H 0707-495, obtained with XMM-Newton, from time periods of varying X-ray luminosity are analysed in the context of understanding the changes to the X-ray emitting corona that lead to the extreme variability seen in the X-ray emission from active galactic nuclei (AGN). The emissivity profile of the accretion disc, illuminated by the X-ray emitting corona, along with previous measurements of reverberation time lags are used to infer the spatial extent of the X-ray source. By fitting a twice-broken power law emissivity profile to the relativistically-broadened iron K fluorescence line, it is inferred that the X-ray emitting corona expands radially, over the plane of the accretion disc, by 25 to 30 per cent as the luminosity increases, contracting again as the luminosity decreases, while increases in the measured reverberation lag as the luminosity increases would require also variation in the vertical extent of the source above the disc. The spectrum of the X-ray continuum is found to soften as the total X-ray luminosity increases and we explore the variation in reflected flux as a function of directly-observed continuum flux. These three observations combined with simple, first-principles models constructed from ray tracing simulations of extended coron self-consistently portray an expanding corona whose average energy density decreases, but with a greater number of scattering particles as the luminosity of this extreme object increases.Comment: 12 pages, 4 figures. Accepted for publication in MNRA

    Modelling the Extreme X-ray Spectrum of IRAS 13224-3809

    Get PDF
    The extreme NLS1 galaxy IRAS 13224-3809 shows significant variability, frequency depended time lags, and strong Fe K line and Fe L features in the long 2011 XMM-Newton observation. In this work we study the spectral properties of IRAS 13224-3809 in detail, and carry out a series of analyses to probe the nature of the source, focusing in particular on the spectral variability exhibited. The RGS spectrum shows no obvious signatures of absorption by partially ionised material (warm absorbers). We fit the 0.3-10.0 keV spectra with a model that includes relativistic reflection from the inner accretion disc, a standard powerlaw AGN continuum, and a low-temperature (~0.1 keV) blackbody, which may originate in the accretion disc, either as direct or reprocessed thermal emission. We find that the reflection model explains the time-averaged spectrum well, and we also undertake flux-resolved and time-resolved spectral analyses, which provide evidence of gravitational light-bending effects. Additionally, the temperature and flux of the blackbody component are found to follow the LT4L\propto T^{4} relation expected for simple thermal blackbody emission from a constant emitting area, indicating a physical origin for this component.Comment: 12 pages, 7 figures, accepted for publication in MNRA

    Discovery of high-frequency iron K lags in Ark 564 and Mrk 335

    Get PDF
    We use archival XMM-Newton observations of Ark 564 and Mrk 335 to calculate the frequency dependent time-lags for these two well-studied sources. We discover high-frequency Fe K lags in both sources, indicating that the red wing of the line precedes the rest frame energy by roughly 100 s and 150 s for Ark 564 and Mrk 335, respectively. Including these two new sources, Fe K reverberation lags have been observed in seven Seyfert galaxies. We examine the low-frequency lag-energy spectrum, which is smooth, and shows no feature of reverberation, as would be expected if the low-frequency lags were produced by distant reflection off circumnuclear material. The clear differences in the low and high frequency lag-energy spectra indicate that the lags are produced by two distinct physical processes. Finally, we find that the amplitude of the Fe K lag scales with black hole mass for these seven sources, consistent with a relativistic reflection model where the lag is the light travel delay associated with reflection of continuum photons off the inner disc.Comment: 10 pages, 12 figures, accepted for publication in MNRA

    X-ray reverberation around accreting black holes

    Full text link
    Luminous accreting stellar mass and supermassive black holes produce power-law continuum X-ray emission from a compact central corona. Reverberation time lags occur due to light travel time-delays between changes in the direct coronal emission and corresponding variations in its reflection from the accretion flow. Reverberation is detectable using light curves made in different X-ray energy bands, since the direct and reflected components have different spectral shapes. Larger, lower frequency, lags are also seen and are identified with propagation of fluctuations through the accretion flow and associated corona. We review the evidence for X-ray reverberation in active galactic nuclei and black hole X-ray binaries, showing how it can be best measured and how it may be modelled. The timescales and energy-dependence of the high frequency reverberation lags show that much of the signal is originating from very close to the black hole in some objects, within a few gravitational radii of the event horizon. We consider how these signals can be studied in the future to carry out X-ray reverberation mapping of the regions closest to black holes.Comment: 72 pages, 32 figures. Accepted for publication in The Astronomy and Astrophysics Review. Corrected for mostly minor typos, but in particular errors are corrected in the denominators of the covariance and rms spectrum error equations (Eqn. 14 and 15

    The Closest Look at 1H0707-495: X-ray Reverberation Lags with 1.3 Ms of Data

    Get PDF
    Reverberation lags in AGN were first discovered in the NLS1 galaxy, 1H0707-495. We present a follow-up analysis using 1.3 Ms of data, which allows for the closest ever look at the reverberation signature of this remarkable source. We confirm previous findings of a hard lag of ~100 seconds at frequencies v ~ [0.5 - 4] e-4 Hz, and a soft lag of ~30 seconds at higher frequencies, v ~ [0.6 - 3] e-3 Hz. These two frequency domains clearly show different energy dependences in their lag spectra. We also find evidence for a signature from the broad Fe K line in the high frequency lag spectrum. We use Monte Carlo simulations to show how the lag and coherence measurements respond to the addition of Poisson noise and to dilution by other components. With our better understanding of these effects on the lag, we show that the lag-energy spectra can be modelled with a scenario in which low frequency hard lags are produced by a compact corona responding to accretion rate fluctuations propagating through an optically thick accretion disc, and the high frequency soft lags are produced by short light-travel delay associated with reflection of coronal power-law photons off the disc.Comment: 11 pages, 10 figures. Accepted for publication in MNRA

    On the clarity of the musical stave

    Get PDF
    The staves of 63 scores of popular keyboard music from 50 publishers were measured. The staves had similar height but lines that varied in thickness from 0.1 mm to 0.45 mm. Evidence from visual psychophysics suggests that when the stave has thick lines, perceptual distortions are likely to affect the clarity of the score adversely. Students were asked to sight-read scores comprising random notes (“chromatic”) or random notes in the key of G. The scores had staves with lines that were 0.1 mm or 0.4 mm thick (current typographic practice). Twice as many errors were made when the staves had thick lines, although the scores were then read more slowly. Scores in the key of G were read more accurately than the “chromatic” scores, but those with thick lines were read with as many errors as “chromatic” scores with thin lines. There was a tendency for individuals with susceptibility to pattern glare to read the scores with thick lines relatively slowly. The findings suggest that perceptual distortions can impair sight-reading of music manuscript because of the pattern from the lines of the stave; using thinner lines can increase both sight reading accuracy and speed. </jats:p
    corecore