313 research outputs found

    A Wide-field High Resolution HI Mosaic of Messier 31: I. Opaque Atomic Gas and Star Formation Rate Density

    Full text link
    We have undertaken a deep, wide-field HI imaging survey of M31, reaching a maximum resolution of about 50 pc and 2 km/s across a 95x48 kpc region. The HI mass and brightness sensitivity at 100 pc resolution for a 25 km/s wide spectral feature is 1500 M_Sun and 0.28 K. Our study reveals ubiquitous HI self-opacity features, discernible in the first instance as filamentary local minima in images of the peak HI brightness temperature. Local minima are organized into complexes of more than kpc length and are particularly associated with the leading edge of spiral arm features. Just as in the Galaxy, there is only patchy correspondence of self-opaque features with CO(1-0) emission. Localized opacity corrections to the column density exceed an order of magnitude in many cases and add globally to a 30% increase in the atomic gas mass over that inferred from the integrated brightness under the usual assumption of negligible self-opacity. Opaque atomic gas first increases from 20 to 60 K in spin temperature with radius to 12 kpc but then declines again to 20 K beyond 25 kpc. We have extended the resolved star formation law down to physical scales more than an order of magnitude smaller in area and mass than has been possible previously. The relation between total-gas-mass- and star-formation-rate-density is significantly tighter than that with molecular-mass and is fully consistent in both slope and normalization with the power law index of 1.56 found in the molecule-dominated disk of M51 at 500 pc resolution. Below a gas-mass-density of about 5 M_Sun/pc^2, there is a down-turn in star-formation-rate-density which may represent a real local threshold for massive star formation at a cloud mass of about 5x10^4 M_Sun.Comment: Accepted for publication in ApJ, 34 pages, 20 figure

    HIIphot: Automated Photometry of HII Regions Applied to M51

    Full text link
    We have developed a robust, automated method, hereafter designated HIIphot, which enables accurate photometric characterization of HII regions while permitting genuine adaptivity to irregular source morphology. HIIphot utilizes object-recognition techniques to make a first guess at the shapes of all sources then allows for departure from such idealized ``seeds'' through an iterative growing procedure. Photometric corrections for spatially coincident diffuse emission are derived from a low-order surface fit to the background after exclusion of all detected sources. We present results for the well-studied, nearby spiral M51 in which 1229 HII regions are detected above the 5-sigma level. A simple, weighted power-law fit to the measured H-alpha luminosity function (HII LF) above log L_H-alpha = 37.6 gives alpha = -1.75+/-0.06, despite a conspicuous break in the HII LF observed near L_H-alpha = 10^38.9. Our best- fit slope is marginally steeper than measured by Rand (1992), perhaps reflecting our increased sensitivity at low luminosities and to notably diffuse objects. HII regions located in interarm gaps are preferentially less luminous than counterparts which constitute M51's grand-design spiral arms and are best fit with a power-law slope of alpha = -1.96+/-0.15. We assign arm/interarm status for HII regions based upon the varying surface brightness of diffuse emission as a function of position throughout the image. Using our measurement of the integrated flux contributed by resolved HII regions in M51, we estimate the diffuse fraction to be approximately 0.45 -- in agreement with the determination of Greenawalt et al. (1998). Automated processing of degraded datasets is undertaken to gauge systematic effects associated with limiting spatial resolution and sensitivity.Comment: 41 pages, 14 figures, Postscript version with high-resolution figures at ftp://ftp.aoc.nrao.edu/staff/dthilker/preprint

    Properties of Resolved Star Clusters in M51

    Full text link
    We present a study of compact star clusters in the nearby pair of interacting galaxies NGC 5194/95 (M51), based on multifilter Hubble Space Telescope WFPC2 archival images. We have detected ~400 isolated clusters. Our requirement that clusters be detected based only on their morphology results in the selection of relatively isolated objects, and we estimate that we are missing the majority (by a factor 4-6) of <10 Myr clusters due to crowding. Hence we focus on the cluster population older than 10 Myr. An age distribution shows a broad peak between 100-500 Myr, which is consistent with the crossing times of NGC 5195 through the NGC 5194 disk estimated in both single and multiple-passage dynamical models. We estimate that the peak contains approximately 2.2-2.5 times more clusters than expected from a constant rate of cluster formation over this time interval. We estimate the effective radii of our sample clusters and find a median value of 3-4 pc. Additionally, we see correlations of increasing cluster size with cluster mass (with a best fit slope of 0.14\pm0.03) at the 4sigma level, and with cluster age (0.06\pm0.02) at the 3sigma level. Finally, we report for the first time the discovery of faint, extended star clusters in the companion, NGC 5195, an SB0 galaxy. These have red [(V-I)>1.0] colors, effective radii >7 pc, and are scattered over the disk of NGC 5195. Our results indicate that NGC 5195 is therefore currently the third known barred lenticular galaxy to have formed so-called "faint fuzzy" star clusters. (abridged)Comment: 15 pages, 12 figures, 1 table; to appear in A

    HII Shells Surrounding Wolf-Rayet stars in M31

    Full text link
    We present the results of an ongoing investigation to provide a detailed view of the processes by which massive stars shape the surrounding interstellar medium (ISM), from pc to kpc scales. In this paper we have focused on studying the environments of Wolf-Rayet (WR) stars in M31 to find evidence for WR wind-ISM interactions, through imaging ionized hydrogen nebulae surrounding these stars. We have conducted a systematic survey for HII shells surrounding 48 of the 49 known WR stars in M31. There are 17 WR stars surrounded by single shells, or shell fragments, 7 stars surrounded by concentric limb brightened shells, 20 stars where there is no clear physical association of the star with nearby H-alpha emission, and 4 stars which lack nearby H-alpha emission. For the 17+7 shells above, there are 12 which contain one or two massive stars (including a WR star) and that are <=40 pc in radius. These 12 shells may be classical WR ejecta or wind-blown shells. Further, there may be excess H-alpha point source emission associated with one of the 12 WR stars surrounded by putative ejecta or wind-blown shells. There is also evidence for excess point source emission associated with 11 other WR stars. The excess emission may arise from unresolved circumstellar shells, or within the extended outer envelopes of the stars themselves. In a few cases we find clear morphological evidence for WR shells interacting with each other. In several H-alpha images we see WR winds disrupting, or punching through, the walls of limb-brightened HII shells.Comment: 20 pages, 4 figures (in several parts: some .jpg and others .ps), accepted to AJ (appearing Oct, 1999

    Tightly Correlated HI and FUV Emission in the Outskirts of M83

    Full text link
    We compare sensitive HI data from The HI Nearby Galaxy Survey (THINGS) and deep far UV (FUV) data from GALEX in the outer disk of M83. The FUV and HI maps show a stunning spatial correlation out to almost 4 optical radii (r25), roughly the extent of our maps. This underscores that HI traces the gas reservoir for outer disk star formation and it implies that massive (at least low level) star formation proceeds almost everywhere HI is observed. Whereas the average FUV intensity decreases steadily with increasing radius before leveling off at ~1.7 r25, the decline in HI surface density is more subtle. Low HI columns (<2 M_solar/pc^2) contribute most of the mass in the outer disk, which is not the case within r25. The time for star formation to consume the available HI, inferred from the ratio of HI to FUV intensity, rises with increasing radius before leveling off at ~100 Gyr, i.e., many Hubble times, near ~1.7 r25. Assuming the relatively short H2 depletion times observed in the inner parts of galaxies hold in outer disks, the conversion of HI into bound, molecular clouds seems to limit star formation in outer galaxy disks. The long consumption times suggest that most of the extended HI observed in M83 will not be consumed by in situ star formation. However, even these low star formation rates are enough to expect moderate chemical enrichment in a closed outer disk.Comment: Accepted for Publication in ApJ

    Are HI Supershells the Remnants of Gamma-Ray Bursts?

    Full text link
    Gamma-Ray Bursts (GRBs) are thought to originate at cosmological distances from the most powerful explosions in the Universe. If GRBs are not beamed then the distribution of their number as a function of Gamma-ray flux implies that they occur once per (0.3-40) million years per bright galaxy and that they deposit >10^{53} ergs into their surrounding interstellar medium. The blast wave generated by a GRB explosion would be washed out by interstellar turbulence only after tens of millions of years when it finally slows down to a velocity of 10 km/s. This rather long lifetime implies that there could be up to several tens of active GRB remnants in each galaxy at any given time. For many years, radio observations have revealed the enigmatic presence of expanding neutral-hydrogen (HI) supershells of kpc radius in the Milky Way and in other nearby galaxies. The properties of some supershells cannot be easily explained in terms of conventional sources such as stellar winds or supernova explosions. However, the inferred energy and frequency of the explosions required to produce most of the observed supershells agree with the above GRB parameters. More careful observations and analysis might reveal which fraction of these supershells are GRB remnants. We show that if this link is established, the data on HI supershells can be used to constrain the energy output, the rate per galaxy, the beaming factor, and the environment of GRB sources in the Universe.Comment: 8 pages, final version, ApJ Letters, in pres

    Simple Models for Turbulent Self-Regulation in Galaxy Disks

    Get PDF
    We propose that turbulent heating, wave pressure and gas exchanges between different regions of disks play a dominant role in determining the preferred, quasi-equilibrium, self-similar states of gas disks on large-scales. We present simple families of analytic, thermohydrodynamic models for these global states, which include terms for turbulent pressure and Reynolds stresses. Star formation rates, phase balances, and hydrodynamic forces are all tightly coupled and balanced. The models have stratified radial flows, with the cold gas slowly flowing inward in the midplane of the disk, and with the warm/hot phases that surround the midplane flowing outward. The models suggest a number of results that are in accord with observation, as well as some novel predictions, including the following. 1) The large-scale gas density and thermal phase distributions in galaxy disks can be explained as the result of turbulent heating and spatial couplings. 2) The turbulent pressures and stresses that drive radial outflows in the warm gas also allow a reduced circular velocity there. This effect was observed by Swaters, Sancisi and van der Hulst in NGC 891, a particularly turbulent edge-on disk. The models predict that the effect should be universal in such disks. 3) They suggest that a star formation rate like the phenomenological Schmidt Law is the natural result of global thermohydrodynamical balance, and may not obtain in disks far from equilibrium. (Abridged)Comment: 37 pages, 1 gif figure, accepted for publication in the Astrophysical Journa

    The Northern Middle Lobe of Centaurus A: Circumgalactic Gas in a Starburst Wind

    Get PDF
    We present deep ultraviolet (GALEX), radio continuum (VLA) and H-alpha (Magellan) images of the circumgalactic medium around Centaurus A (NGC5128). We focus on the Northern Middle Lobe (NML), a region extending more than 50kpc beyond the galaxy and known to host a collection of striking phenomena: emission line filaments, recent star formation, disrupted HI/molecular gas streams, and short-lived X-ray clouds. Far UV emission is tightly correlated with H-alpha emission for more than 50kpc, and loosely associated with a filament of X-ray clouds and with the radio continuum emission. The radio emission in the NML region does not appear to be an extension of the inner radio jet (10kpc) or a typical radio lobe. We speculate that the "weather" seen in the NML region is a short-lived phenomenon, caused by an outflow encountering cool gas deposited by one of the recent merger/encounter events which have characterized the history of NGC5128

    Lenticular galaxies with UV-rings

    Full text link
    By using the public UV imaging data obtained by the GALEX (Galaxy Ultraviolet Explorer) for nearby galaxies, we have compiled a list of lenticular galaxies possessing ultraviolet rings - starforming regions tightly confined to particular radial distances from galactic centers. We have studied large-scale structure of these galaxies in the optical bands by using the data of the SDSS (Sloan Digital Sky Survey): we have decomposed the galactic images into large-scale disks and bulges, have measured the ring optical colours from the residual images after subtracting model disks and bulges, and have compared the sizes of the rings in the optical light and in the UV-band. The probable origin of the outer starforming ring appearances in unbarred galaxies demonstrating otherwise the regular structure and homogeneously old stellar population beyond the rings is discussed.Comment: 9 pages plus one big colour figure in the Appendix; the slightly expanded version of the paper accepted to Astronomy Letter
    • …
    corecore