127 research outputs found

    A new technique to improve RFI suppression in radio interferometers

    Full text link
    Radio interferometric observations are less susceptible to radio frequency interference (RFI) than single dish observations. This is primarily due to : (1)fringe-frequency averaging at the correlator output and (2) bandwidth decorrelation of broadband RFI. Here, we propose a new technique to improve RFI suppression of interferometers by replacing the fringe-frequency averaging process with a different filtering process. In the digital implementation of the correlator, such a filter should have cutoff frequencies <106< 10^{-6} times the frequency at which the baseband signals are sampled. We show that filters with such cutoff frequencies and attenuation >> 40 dB at frequencies above the cutoff frequency can be realized using multirate filtering techniques. Simulation of a two element interferometer system with correlator using multirate filters shows that the RFI suppression at the output of the correlator can be improved by 40 dB or more compared to correlators using a simple averaging process.Comment: 12 pages, 7 figures; Invited talk given at IVS Symposium in Korea -- New Technologies in VLBI, Korea, Nov 2002; to appear in the conference proceedings (Added answers to the questions during the discussion session

    Magnetic Field Strengths in Photodissociation Regions

    Get PDF
    We measure carbon radio recombination line (RRL) emission at 5.3 GHz toward four H ii regions with the Green Bank Telescope to determine the magnetic field strength in the photodissociation region (PDR) that surrounds the ionized gas. Roshi suggests that the non-thermal line widths of carbon RRLs from PDRs are predominantly due to magneto-hydrodynamic waves, thus allowing the magnetic field strength to be derived. We model the PDR with a simple geometry and perform the non-LTE radiative transfer of the carbon RRL emission to solve for the PDR physical properties. Using the PDR mass density from these models and the carbon RRL non-thermal line width we estimate total magnetic field strengths of B ~ 100-300 µG in W3 and NGC 6334A. Our results for W49 and NGC 6334D are less well constrained with total magnetic field strengths between B ~ 200-1000 µG. H i and OH Zeeman measurements of the line of sight magnetic field strength (B_(los)), taken from the literature, are between a factor of ~ 0.5-1 of the lower bound of our carbon RRL magnetic field strength estimates. Since |B_(los)| ⩽ B, our results are consistent with the magnetic origin of the non-thermal component of carbon RRL widths

    Carbon Recombination Lines from the Galactic Plane at 34.5 & 328 MHz

    Get PDF
    We present results of a search for carbon recombination lines in the Galaxy at 34.5 MHz (C575α575\alpha) made using the dipole array at Gauribidanur near Bangalore. Observations made towards 32 directions, led to detections of lines in absorption at nine positions. Followup observations at 328 MHz (C272α272\alpha) using the Ooty Radio Telescope detected these lines in emission. A VLA D-array observation of one of the positions at 330 MHz yielded no detection implying a lower limit of 10' for the angular size of the line forming region. The longitude-velocity distribution of the observed carbon lines indicate that the line forming region are located mainly between 4 kpc and 7 kpc from the Galactic centre. Combining our results with published carbon recombination line data near 76 MHz (\nocite{erickson:95} Erickson \et 1995) we obtain constraints on the physical parameters of the line forming regions. We find that if the angular size of the line forming regions is 4\ge 4^{\circ}, then the range of parameters that fit the data are: \Te =2040= 20-40 K, \ne 0.10.3\sim 0.1-0.3 \cm3 and pathlengths 0.070.9\sim 0.07-0.9 pc which may correspond to thin photo-dissociated regions around molecular clouds. On the other hand, if the line forming regions are 2\sim 2^{\circ} in extent, then warmer gas (\Te 60300\sim 60-300 K) with lower electron densities (\ne 0.030.05\sim 0.03-0.05 \cm3) extending over several tens of parsecs along the line of sight and possibly associated with atomic \HI gas can fit the data. Based on the range of derived parameters, we suggest that the carbon line regions are most likely associated with photo-dissociation regions.Comment: To appear in Journal of Astrophysics & Astronomy, March 200

    G359.87+0.18: An FR II Radio Galaxy 15 Arcminutes from Sgr A*. Implications for the Scattering Region in the Galactic Center

    Full text link
    G359.87+0.18 is an enigmatic object located 15' from Sgr A*. It has been variously classified as an extragalactic source, Galactic jet source, and young supernova remnant. We present new observations of G359.87+0.18 between 0.33 and 15 GHz and use these to argue that this source is an Faranoff-Riley II radio galaxy. We are able to place a crude limit on its redshift of z > 0.1. The source has a spectral index \alpha < -1 (S \propto \nu^\alpha), suggestive of a radio galaxy with a redshift z >~ 2. The scattering diameters of Sgr A* and several nearby OH masers (~ 1" at 1 GHz) indicate that a region of enhanced scattering is along the line of sight to the Galactic center. If the region covers the Galactic center uniformly, the implied diameter for a background source is at least 600" at 0.33 GHz, in contrast with the observed 20" diameter of G359.87+0.18. Using the scattering diameter of a nearby OH maser OH 359.762+0.120 and the widths of two, nearby, non-thermal threads, G0.08+0.15 and G359.79+0.17, we show that a uniform scattering region should cover G359.87+0.18. We therefore conclude that the Galactic center scattering region is inhomogeneous on a scale of 5' (~ 10 pc at a distance of 8.5 kpc). This scale is comparable to the size scale of molecular clouds in the Galactic center. The close agreement between these two lengths scales is an indication that the scattering region is linked intimately to the Galactic center molecular clouds.Comment: Accepted for publication in the ApJ, vol. 515, LaTeX2e manuscript using aaspp4 macro, 19 pages, 8 figures in 11 PostScript file

    A new layout optimization technique for interferometric arrays, applied to the MWA

    Get PDF
    Antenna layout is an important design consideration for radio interferometers because it determines the quality of the snapshot point spread function (PSF, or array beam). This is particularly true for experiments targeting the 21 cm Epoch of Reionization signal as the quality of the foreground subtraction depends directly on the spatial dynamic range and thus the smoothness of the baseline distribution. Nearly all sites have constraints on where antennas can be placed---even at the remote Australian location of the MWA (Murchison Widefield Array) there are rock outcrops, flood zones, heritages areas, emergency runways and trees. These exclusion areas can introduce spatial structure into the baseline distribution that enhance the PSF sidelobes and reduce the angular dynamic range. In this paper we present a new method of constrained antenna placement that reduces the spatial structure in the baseline distribution. This method not only outperforms random placement algorithms that avoid exclusion zones, but surprisingly outperforms random placement algorithms without constraints to provide what we believe are the smoothest constrained baseline distributions developed to date. We use our new algorithm to determine antenna placements for the originally planned MWA, and present the antenna locations, baseline distribution, and snapshot PSF for this array choice.Comment: 12 pages, 6 figures, 1 table. Accepted for publication in MNRA

    WSClean : an implementation of a fast, generic wide-field imager for radio astronomy

    Get PDF
    This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society. © 2014 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society.Astronomical widefield imaging of interferometric radio data is computationally expensive, especially for the large data volumes created by modern non-coplanar many-element arrays. We present a new widefield interferometric imager that uses the w-stacking algorithm and can make use of the w-snapshot algorithm. The performance dependencies of CASA's w-projection and our new imager are analysed and analytical functions are derived that describe the required computing cost for both imagers. On data from the Murchison Widefield Array, we find our new method to be an order of magnitude faster than w-projection, as well as being capable of full-sky imaging at full resolution and with correct polarisation correction. We predict the computing costs for several other arrays and estimate that our imager is a factor of 2-12 faster, depending on the array configuration. We estimate the computing cost for imaging the low-frequency Square-Kilometre Array observations to be 60 PetaFLOPS with current techniques. We find that combining w-stacking with the w-snapshot algorithm does not significantly improve computing requirements over pure w-stacking. The source code of our new imager is publicly released.Peer reviewedFinal Published versio

    Interferometric imaging with the 32 element Murchison Wide-field Array

    Get PDF
    The Murchison Wide-field Array (MWA) is a low frequency radio telescope, currently under construction, intended to search for the spectral signature of the epoch of re-ionisation (EOR) and to probe the structure of the solar corona. Sited in Western Australia, the full MWA will comprise 8192 dipoles grouped into 512 tiles, and be capable of imaging the sky south of 40 degree declination, from 80 MHz to 300 MHz with an instantaneous field of view that is tens of degrees wide and a resolution of a few arcminutes. A 32-station prototype of the MWA has been recently commissioned and a set of observations taken that exercise the whole acquisition and processing pipeline. We present Stokes I, Q, and U images from two ~4 hour integrations of a field 20 degrees wide centered on Pictoris A. These images demonstrate the capacity and stability of a real-time calibration and imaging technique employing the weighted addition of warped snapshots to counter extreme wide field imaging distortions.Comment: Accepted for publication in PASP. This is the draft before journal typesetting corrections and proofs so does contain formatting and journal style errors, also has with lower quality figures for space requirement

    Multi-frequency GMRT Observations of the HII regions S 201, S 206, and S 209 : Galactic Temperature Gradient

    Full text link
    We present radio continuum images of three Galactic HII regions, S 201, S 206, and S 209 near 232, 327, and 610 MHz using the Giant Meterwave Radio Telescope (GMRT). The GMRT has a mix of short and long baselines, therefore, even though the data have high spatial resolution, the maps are still sensitive to diffuse extended emission. We find that all three HII regions have bright cores surrounded by diffuse envelopes. We use the high resolution afforded by the data to estimate the electron temperatures and emission measures of the compact cores of these HII regions. Our estimates of electron temperatures are consistent with a linear increase of electron temperature with Galacto-centric distance for distances up to 18 kpc (the distance to the most distant HII region in our sample).Comment: Accepted for publication in Astronomy & Astrophysics, 13 figures, 6 pages, Late
    corecore