593 research outputs found

    Zero- and one-dimensional magnetic traps for quasi-particles

    Full text link
    We investigate the possibility of trapping quasi-particles possessing spin degree of freedom in hybrid structures. The hybrid system we are considering here is composed of a semi-magnetic quantum well placed a few nanometers below a ferromagnetic micromagnet. We are interested in two different micromagnet shapes: cylindrical (micro-disk) and rectangular geometry. We show that in the case of a micro-disk, the spin object is localized in all three directions and therefore zero-dimensional states are created, and in the case of an elongated rectangular micromagnet, the quasi-particles can move freely in one direction, hence one-dimensional states are formed. After calculating profiles of the magnetic field produced by the micromagnets, we analyze in detail the possible light absorption spectrum for different micromagnet thicknesses, and different distances between the micromagnet and the semimagnetic quantum well. We find that the discrete spectrum of the localized states can be detected via spatially-resolved low temperature optical measurement.Comment: 15 pages, 9 figure

    Magnetic effects in sulfur-decorated graphene

    Full text link
    The interaction between two different materials can present novel phenomena that are quite different from the physical properties observed when each material stands alone. Strong electronic correlations, such as magnetism and superconductivity, can be produced as the result of enhanced Coulomb interactions between electrons. Two-dimensional materials are powerful candidates to search for the novel phenomena because of the easiness of arranging them and modifying their properties accordingly. In this work, we report magnetic effects of graphene, a prototypical non-magnetic two-dimensional semi-metal, in the proximity with sulfur, a diamagnetic insulator. In contrast to the well-defined metallic behaviour of clean graphene, an energy gap develops at the Fermi energy for the graphene/sulfur compound with decreasing temperature. This is accompanied by a steep increase of the resistance, a sign change of the slope in the magneto-resistance between high and low fields, and magnetic hysteresis. A possible origin of the observed electronic and magnetic responses is discussed in terms of the onset of low-temperature magnetic ordering. These results provide intriguing insights on the search for novel quantum phases in graphene-based compounds.Comment: 6 pages and 5 figure

    Entanglement in the One-dimensional Kondo Necklace Model

    Get PDF
    We discuss the thermal and magnetic entanglement in the one-dimensional Kondo necklace model. Firstly, we show how the entanglement naturally present at zero temperature is distributed among pairs of spins according to the strength of the two couplings of the chain, namely, the Kondo exchange interaction and the hopping energy. The effect of the temperature and the presence of an external magnetic field is then investigated, being discussed the adjustment of these variables in order to control the entanglement available in the system. In particular, it is indicated the existence of a critical magnetic field above which the entanglement undergoes a sharp variation, leading the ground state to a completely unentangled phase.Comment: 8 pages, 13 EPS figures. v2: four references adde

    Decoupling Internalization, Acidification and Phagosomal-Endosomal/lysosomal Fusion during Phagocytosis of InlA Coated Beads in Epithelial Cells

    Get PDF
    BACKGROUND: Phagocytosis has been extensively examined in 'professional' phagocytic cells using pH sensitive dyes. However, in many of the previous studies, a separation between the end of internalization, beginning of acidification and completion of phagosomal-endosomal/lysosomal fusion was not clearly established. In addition, very little work has been done to systematically examine phagosomal maturation in 'non-professional' phagocytic cells. Therefore, in this study, we developed a simple method to measure and decouple particle internalization, phagosomal acidification and phagosomal-endosomal/lysosomal fusion in Madin-Darby Canine Kidney (MDCK) and Caco-2 epithelial cells. METHODOLOGY/PRINCIPAL FINDINGS: Our method was developed using a pathogen mimetic system consisting of polystyrene beads coated with Internalin A (InlA), a membrane surface protein from Listeria monocytogenes known to trigger receptor-mediated phagocytosis. We were able to independently measure the rates of internalization, phagosomal acidification and phagosomal-endosomal/lysosomal fusion in epithelial cells by combining the InlA-coated beads (InlA-beads) with antibody quenching, a pH sensitive dye and an endosomal/lysosomal dye. By performing these independent measurements under identical experimental conditions, we were able to decouple the three processes and establish time scales for each. In a separate set of experiments, we exploited the phagosomal acidification process to demonstrate an additional, real-time method for tracking bead binding, internalization and phagosomal acidification. CONCLUSIONS/SIGNIFICANCE: Using this method, we found that the time scales for internalization, phagosomal acidification and phagosomal-endosomal/lysosomal fusion ranged from 23-32 min, 3-4 min and 74-120 min, respectively, for MDCK and Caco-2 epithelial cells. Both the static and real-time methods developed here are expected to be readily and broadly applicable, as they simply require fluorophore conjugation to a particle of interest, such as a pathogen or mimetic, in combination with common cell labeling dyes. As such, these methods hold promise for future measurements of receptor-mediated internalization in other cell systems, e.g. pathogen-host systems

    Numerical calculation of the Casimir-Polder interaction between a graphene sheet with vacancies and an atom

    Get PDF
    In this work the Casimir-Polder interaction energy between a rubidium atom and a disordered graphene sheet is investigated beyond the Dirac cone approximation by means of accurate real-space tight-binding calculations. As a model of defected graphene, we consider a tight-binding model of π electrons on a honeycomb lattice with a small concentration of vacancies. The optical response of the graphene sheet is evaluated with full spectral resolution by means of exact Chebyshev polynomial expansions of the Kubo formula in large lattices in excess of 10 million atoms. At low temperatures, the optical response of defected graphene is found to display two qualitatively distinct behaviors with a clear transition around finite (nonzero) Fermi energy. In the vicinity of the Dirac point, the imaginary part of optical conductivity is negative for low frequencies while the real part is strongly suppressed. On the other hand, for high doping, it has the same features found in the Drude model within the Dirac cone approximation, namely, a Drude peak at small frequencies and a change of sign in the imaginary part above the interband threshold. These characteristics translate into a nonmonotonic behavior of the Casimir-Polder interaction energy with very small variation with doping in the vicinity of the neutrality point while having the same form of the interaction calculated with Drude's model at high electronic density

    Role of Disorder on the Quantum Critical Point of a Model for Heavy Fermions

    Full text link
    A zero temperature real space renormalization group (RG) approach is used to investigate the role of disorder near the quantum critical point (QCP) of a Kondo necklace (XY-KN) model. In the pure case this approach yields Jc=0J_{c}=0 implying that any coupling J0J \not = 0 between the local moments and the conduction electrons leads to a non-magnetic phase. We also consider an anisotropic version of the model (XKNX-KN), for which there is a quantum phase transition at a finite value of the ratio between the coupling and the bandwidth, (J/W)(J/W). Disorder is introduced either in the on-site interactions or in the hopping terms. We find that in both cases randomness is irrelevant in the XKNX-KN model, i.e., the disorder induced magnetic-non-magnetic quantum phase transition is controlled by the same exponents of the pure case. Finally, we show the fixed point distributions PJ(J/W)P_{J}(J/W) at the atractors of the disordered, non-magnetic phases.Comment: 5 pages, 3 figure

    Early Antiretroviral Therapy at High CD4 Counts Does Not Improve Arterial Elasticity: A Substudy of the Strategic Timing of AntiRetroviral Treatment (START) Trial

    Get PDF
    BACKGROUND: Both human immunodeficiency virus (HIV) infection and antiretroviral therapy (ART) may increase cardiovascular disease (CVD) risk. Vascular function assessments can be used to study CVD pathogenesis. We compared the effect of immediate versus deferred ART initiation at CD4 counts >500 cells/mm(3) on small arterial elasticity (SAE) and large artery elasticity (LAE). METHODS: Radial artery blood pressure waveforms were recorded noninvasively. Small arterial elasticity and LAE were derived from analysis of the diastolic pulse waveform. Randomized treatment groups were compared with linear models at each visit and longitudinal mixed models. RESULTS: Study visits involved 332 participants in 8 countries: mean (standard deviation [SD]) age 35 (10), 70% male, 66% nonwhite, 30% smokers, and median CD4 count 625 cells/mm(3) and 10-year Framingham risk score for CVD 1.7%. Mean (SD) SAE and LAE values at baseline were 7.3 (2.9) mL/mmHg × 100 and 16.6 (4.1) mL/mmHg × 10, respectively. Median time on ART was 47 and 12 months in the immediate and deferred ART groups, respectively. The treatment groups did not demonstrate significant within-person changes in SAE or LAE during the follow-up period, and there was no difference in mean change from baseline between treatment groups. The lack of significant differences persisted after adjustment, when restricted to early or late changes, after censoring participants in deferred group who started ART, and among subgroups defined by CVD and HIV risk factors. CONCLUSIONS: Among a diverse global population of HIV-positive persons with high CD4 counts, these randomized data suggest that ART treatment does not have a substantial influence on vascular function among younger HIV-positive individuals with preserved immunity
    corecore