711 research outputs found

    Materials Contrast in Piezoresponse Force Microscopy

    Full text link
    Piezoresponse Force Microscopy contrast in transversally isotropic material corresponding to the case of c+ - c- domains in tetragonal ferroelectrics is analyzed using Green's function theory by Felten et al. [J. Appl. Phys. 96, 563 (2004)]. A simplified expression for PFM signal as a linear combination of relevant piezoelectric constant are obtained. This analysis is extended to piezoelectric material of arbitrary symmetry with weak elastic and dielectric anisotropies. This result provides a framework for interpretation of PFM signals for systems with unknown or poorly known local elastic and dielectric properties, including nanocrystalline materials, ferroelectric polymers, and biopolymers.Comment: 20 pages, 3 figures, 1 table, accepted to Appl. Phys. Lett. (without Appendices), algebraic errors were correcte

    Late Holocene palynology and palaeovegetation of tephra-bearing mires at Papamoa and Waihi Beach, western Bay of Plenty, North Island, New Zealand.

    Get PDF
    The vegetation history of two mires associated with Holocene dunes near the western Bay of Plenty coast, North Island, New Zealand, is deduced from pollen analysis of two cores. Correlation of airfall tephra layers in the peats, and radiocarbon dates, indicate that the mires at Papamoa and Waihi Beach are c. 4600 and c. 2900 conventional radiocarbon years old, respectively. Tephras used to constrain the chronology of the pollen record include Rotomahana (1886 AD), Kaharoa (700 yr B.P.), Taupo (Unit Y; 1850 yr B.P.), Whakaipo (Unit V; 2700 yr B.P.), Stent (Unit Q; 4000 yr B.P.), Hinemaiaia (Unit K; 4600 yr B.P.), and reworked Whakatane (c. 4800 yr B.P.) at Papamoa, and Kaharoa and Taupo at Waihi Beach. Peat accumulation rates at Papamoa from 4600 - 1850 yr B.P. range from 0.94 to 2.64 mm/yr (mean 1.37 mm/yr). At Waihi Beach, from 2900 yr B.P. - present day, they range from 0.11 to 0.21 mm/yr (mean 0.20 mm/yr). Peat accumulation at both sites was slowest from 1850 to 700 yr B.P., suggesting a drier overall climate during this interval. At both sites, the earliest organic sediments, which are underlain by marine or estuarine sands, yield pollen spectra indicating salt marsh or estuarine environments. Coastal vegetation communities declined at both sites, as sea level gradually fell or the coast prograded, and were eventually superseded by a low moor bog at Papamoa, and a mesotrophic swamp forest at Waihi Beach. These differences, and the marked variation in peat accumulation rates, probably reflect local hydrology and are unlikely to have been climatically controlled. The main regional vegetation during this period was mixed northern conifer-angiosperm forest. Kauri (Agathis australis) formed a minor component of these forests, but populations of this tree have apparently not expanded during the late Holocene at these sites, which are near its present southern limit. Occasional shortlived forest disturbances are detectable in these records, in particular immediately following the deposition of Taupo Tephra. However, evidence for forest clearance during the human era is blurred by the downward dislocation of modern adventi ve pollen at these sites, preventing the clear differentiation of the Polynesian and European eras

    Towards a microscopic theory of toroidal moments in bulk periodic crystals

    Full text link
    We present a theoretical analysis of magnetic toroidal moments in periodic systems, in the limit in which the toroidal moments are caused by a time and space reversal symmetry breaking arrangement of localized magnetic dipole moments. We summarize the basic definitions for finite systems and address the question of how to generalize these definitions to the bulk periodic case. We define the toroidization as the toroidal moment per unit cell volume, and we show that periodic boundary conditions lead to a multivaluedness of the toroidization, which suggests that only differences in toroidization are meaningful observable quantities. Our analysis bears strong analogy to the modern theory of electric polarization in bulk periodic systems, but we also point out some important differences between the two cases. We then discuss the instructive example of a one-dimensional chain of magnetic moments, and we show how to properly calculate changes of the toroidization for this system. Finally, we evaluate and discuss the toroidization (in the local dipole limit) of four important example materials: BaNiF_4, LiCoPO_4, GaFeO_3, and BiFeO_3.Comment: replaced with final (published) version, which includes some changes in the text to improve the clarity of presentatio

    Stratigraphy and chronology of a 15ka sequence of multi-sourced silicic tephras in a montane peat bog, eastern North Island, New Zealand.

    Get PDF
    We document the stratigraphy, composition, and chronology of a succession of 16 distal, silicic tephra layers interbedded with lateglacial and Holocene peats and muds up to c. 15 000 radiocarbon years (c. 18 000 calendar years) old at a montane site (Kaipo Bog) in eastern North Island, New Zealand. Aged from 665 +/- 15 to 14 700 +/- 95 14C yr BP, the tephras are derived from six volcanic centres in North Island, three of which are rhyolitic (Okataina, Taupo, Maroa), one peralkaline (Tuhua), and two andesitic (Tongariro, Egmont). Correlations are based on multiple criteria: field properties and stratigraphic interrelationships, ferromagnesian silicate mineral assemblages, glass-shard major element composition (from electron microprobe analysis), and radiocarbon dating. We extend the known distribution of tephras in eastern North Island and provide compositional data that add to their potential usefulness as isochronous markers. The chronostratigraphic framework established for the Kaipo sequence, based on both site-specific and independently derived tephra-based radiocarbon ages, provides the basis for fine-resolution paleoenvironmental studies at a climatically sensitive terrestrial site from the mid latitudes of the Southern Hemisphere. Tephras identified as especially useful paleoenvironmental markers include Rerewhakaaitu and Waiohau (lateglacial), Konini (lateglacial-early Holocene), Tuhua (middle Holocene), and Taupo and Kaharoa (late Holocene)

    Simulation of sub-millimetre atmospheric spectra for characterizing potential ground-based remote sensing observations

    Get PDF
    The sub-millimetre is an understudied region of the Earth's atmospheric electromagnetic spectrum. Prior technological gaps and relatively high opacity due to the prevalence of rotational water vapour lines at these wavelengths have slowed progress from a ground-based remote sensing perspective; however, emerging superconducting detector technologies in the fields of astronomy offer the potential to address key atmospheric science challenges with new instrumental methods. A site study, with a focus on the polar regions, is performed to assess theoretical feasibility by simulating the downwelling clear-sky sub-millimetre spectrum from 30 mm (10 GHz) to 150 Όm (2000 GHz) at six locations under annual mean, summer, winter, daytime, nighttime and low humidity conditions. Vertical profiles of temperature, pressure and 28 atmospheric gases are constructed by combining radiosonde, meteorological reanalysis, and atmospheric chemistry model data. The sensitivity of the simulated spectra to the choice of water vapour continuum model and spectroscopic line database is explored. For the atmospheric trace species hypobromous acid (HOBr), hydrogen bromide (HBr), perhydroxyl radical (HO2) and nitrous oxide (N2O) the emission lines producing the largest change in brightness temperature are identified. Signal strengths, centre frequencies, bandwidths, estimated minimum integration times and maximum receiver noise temperatures are determined for all cases. HOBr, HBr and HO2 produce brightness temperature peaks in the mK to K range, whereas the N2O peaks are in the K range. The optimal sub-millimetre remote sensing lines for the four species are shown to vary significantly between location and scenario, strengthening the case for future hyperspectral instruments that measure over a broad wavelength range. The techniques presented here provide a framework that can be applied to additional species of interest and taken forward to simulate retrievals and guide the design of future sub-millimetre instruments

    Substorm-induced energetic electron precipitation:impact on atmospheric chemistry

    Get PDF
    Magnetospheric substorms drive energetic electron precipitation into the Earth's atmosphere. We use the output from a substorm model to describe electron precipitation forcing of the atmosphere during an active substorm period in April–May 2007. We provide the first estimate of substorm impact on the neutral composition of the polar middle atmosphere. Model simulations show that the enhanced ionization from a series of substorms leads to an estimated ozone loss of 5–50% in the mesospheric column depending on season. This is similar in scale to small to medium solar proton events (SPEs). This effect on polar ozone balance is potentially more important on long time scales (months to years) than the impulsive but sporadic (few SPE/year versus three to four substorms/day) effect of SPEs. Our results suggest that substorms should be considered an important source of energetic particle precipitation into the atmosphere and included in high-top chemistry-climate models

    Macrofossils and pollen representing forests of the pre-Taupo volcanic eruption (c. 1850 yr BP) era at Pureora and Benneydale, central North Island, New Zealand.

    Get PDF
    Micro- and macrofossil data from the remains of forests overwhelmed and buried at Pureora and Benneydale during the Taupo eruption (c. 1850 conventional radiocarbon yr BP) were compared. Classification of relative abundance data separated the techniques, rather than the locations, because the two primary clusters comprised pollen and litter/wood. This indicates that the pollen:litter/wood within-site comparisons (Pureora and Benneydale are 20 km apart) are not reliable. Plant macrofossils represented mainly local vegetation, while pollen assemblages represented a combination of local and regional vegetation. However, using ranked abundance and presence/absence data, both macrofossils and pollen at Pureora and Benneydale indicated conifer/broadleaved forest, of similar forest type and species composition at each site. This suggests that the forests destroyed by the eruption were typical of mid-altitude west Taupo forests, and that either data set (pollen or macrofossils) would have been adequate for regional forest interpretation. The representation of c. 1850 yr BP pollen from the known buried forest taxa was generally consistent with trends determined by modern comparisons between pollen and their source vegetation, but with a few exceptions. A pollen profile from between the Mamaku Tephra (c. 7250 yr BP) and the Taupo Ignimbrite indicated that the Benneydale forest had been markedly different in species dominance compared with the forest that was destroyed during the Taupo eruption. These differences probably reflect changes in drainage, and improvements in climate and/or soil fertility over the middle Holocene

    Ground-based Ku-band microwave observations of ozone in the polar middle atmosphere

    Get PDF
    Ground-based observations of 11.072 GHz atmospheric ozone (O3) emission have been made using the NyÅlesund Ozone in the Mesosphere Instrument (NAOMI) at the UK Arctic Research Station (latitude 78 550000 N, longitude 11 5505900 E), Spitsbergen. Seasonally averaged O3 vertical profiles in the Arctic polar mesosphere–lower thermosphere region for night-time and twilight conditions in the period 15 August 2017 to 15 March 2020 have been retrieved over the altitude range 62–98 km. NAOMI measurements are compared with corresponding, overlapping observations by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) satellite instrument. The NAOMI and SABER version 2.0 data are binned according to the SABER instrument 60 d yaw cycles into nominal 3-month “winter” (15 December–15 March), “autumn” (15 August– 15 November), and “summer” (15 April–15 July) periods. The NAOMI observations show the same year-to-year and seasonal variabilities as the SABER 9.6 ÎŒm O3 data. The winter night-time (solar zenith angle, SZA 110 ) and twilight (75 SZA 110 ) NAOMI and SABER 9.6 ÎŒm O3 volume mixing ratio (VMR) profiles agree to within the measurement uncertainties. However, for autumn twilight conditions the SABER 9.6 ÎŒm O3 secondary maximum VMR values are higher than NAOMI over altitudes 88–97 km by 47% and 59 %, respectively in 2017 and 2018. Comparing the two SABER channels which measure O3 at different wavelengths and use different processing schemes, the 9.6 ÎŒm O3 autumn twilight VMR data for the three years 2017–2019 are higher than the corresponding 1.27 ÎŒm measurements with the largest difference (58 %) in the 65–95 km altitude range similar to the NAOMI observation. The SABER 9.6 ÎŒm O3 summer daytime (SZA<75 ) mesospheric O3 VMR is also consistently higher than the 1.27 ÎŒm measurement, confirming previously reported differences between the SABER 9.6 ÎŒm channel and measurements of mesospheric O3 by other satellite instruments

    Scaled free energies, power-law potentials, strain pseudospins and quasi-universality for first-order structural transitions

    Get PDF
    We consider ferroelastic first-order phase transitions with NOPN_{OP} order-parameter strains entering Landau free energies as invariant polynomials, that have NVN_V structural-variant Landau minima. The total free energy includes (seemingly innocuous) harmonic terms, in the n=6−NOPn = 6 -N_{OP} {\it non}-order-parameter strains. Four 3D transitions are considered, tetragonal/orthorhombic, cubic/tetragonal, cubic/trigonal and cubic/orthorhombic unit-cell distortions, with respectively, NOP=1,2,3N_{OP} = 1, 2, 3 and 2; and NV=2,3,4N_V = 2, 3, 4 and 6. Five 2D transitions are also considered, as simpler examples. Following Barsch and Krumhansl, we scale the free energy to absorb most material-dependent elastic coefficients into an overall prefactor, by scaling in an overall elastic energy density; a dimensionless temperature variable; and the spontaneous-strain magnitude at transition λ<<1\lambda <<1. To leading order in λ\lambda the scaled Landau minima become material-independent, in a kind of 'quasi-universality'. The scaled minima in NOPN_{OP}-dimensional order-parameter space, fall at the centre and at the NVN_V corners, of a transition-specific polyhedron inscribed in a sphere, whose radius is unity at transition. The `polyhedra' for the four 3D transitions are respectively, a line, a triangle, a tetrahedron, and a hexagon. We minimize the nn terms harmonic in the non-order-parameter strains, by substituting solutions of the 'no dislocation' St Venant compatibility constraints, and explicitly obtain powerlaw anisotropic, order-parameter interactions, for all transitions. In a reduced discrete-variable description, the competing minima of the Landau free energies induce unit-magnitude pseudospin vectors, with NV+1N_V +1 values, pointing to the polyhedra corners and the (zero-value) center.Comment: submitted to PR
    • 

    corecore