427 research outputs found

    Photoproduction of electron-positron pairs in bent single crystals

    Full text link
    The process of photoproduction of electron-positron pairs in bent single crystals is considered in this paper. In particular, it is shown that the probability of the process for gamma-quanta with energies from 100 GeV on is significantly higher than the one in an amorphous medium. A possible scenario for the experimental validation of the process is discussed and the positive features of the photoproduction in bent crystals compared to straight ones are underlined from the point of view of possible applications.Comment: 13 pages, 6 figure

    Nucleon resonance contributions to unpolarised inclusive electron scattering

    Get PDF
    The first CLAS12 experiments will provide high-precision data on inclusive electron scattering observables at a photon virtuality Q2Q^2 ranging from 0.05 GeV2^2 to 12 GeV2^2 and center-of-mass energies WW up to 4 GeV. In view of this endeavour, we present the modeling of the resonant contributions to the inclusive electron scattering observables. As input, we use the existing CLAS electrocoupling results obtained from exclusive meson electroproduction data off protons, and evaluate for the first time the resonant contributions based on the experimental results on the nucleon resonance electroexcitation. The uncertainties are given by the data and duly propagated through a Monte Carlo approach. In this way, we obtain estimates for the resonant contributions, important for insight into the nucleon parton distributions in the resonance region and for the studies of quark-hadron duality

    Use of site symmetry in supercell models of defective crystals: Polarons in CeO2

    Get PDF
    The authors thank R. Merkle and G. W. Watson for stimulating discussions. E. K. also acknowledges partial financial support from the Russian Science Foundation for the study of charged defects under the project 14-43-00052. A. C. also acknowledges financial support from the University of Latvia Foundation (Arnis Riekstins's "MikroTik" donation). E. K. and D. G. express their gratitude to the High Performance Computer Centre in Stuttgart (HLRS, project DEFTD 12939) for the provided computer facilities whereas R. A. E. thanks the St. Petersburg State University Computer Center for assistance in high-performance calculations.In supercell calculations of defective crystals, it is common to place a point defect or vacancy in the atomic position with the highest possible point symmetry. Then, the initial atomic structure is often arbitrary distorted before its optimization, which searches for the total energy minimum. In this paper, we suggest an alternative approach to the application of supercell models and show that it is necessary to preliminarily analyze the site symmetry of the split Wyckoff positions of the perfect crystal supercell atoms (which will be substituted or removed in defective crystals) and then perform supercell calculations with point defects for different possible site symmetries, to find the energetically most favorable defect configuration, which does not necessarily correspond to the highest site symmetry. Using CeO2 as an example, it is demonstrated that this use of the site symmetry of the removed oxygen atoms in the supercells with vacancies allows us to obtain all the possible atomic and magnetic polaron configurations, and predict which vacancy positions correspond to the lowest formation energies associated with small polarons. We give a simple symmetry based explanation for the existence of controversies in the literature on the nature of the oxygen vacancies in CeO2. In particular, the experimentally observed small polaron formation could arise for oxygen vacancies with the lowest Cs site symmetry, which exist in 3 x 3 x 3 and larger supercells. The results of first principles calculations using a linear combination of atomic orbitals and hybrid exchange-correlation functionals are compared with those from previous studies, obtained using a widely used DFT+U approach.Russian Science Foundation 14-43-00052; Saint Petersburg State University; University of Latvia Foundation (Arnis Riekstins's "MikroTik" donation); Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART

    Strength and Ductility Evaluation of L-Shape Shear Connectors in Composite Floors

    Get PDF
    Existing composite floor design approaches require technical data on strength and ductility of shear connectors, which can be defined only by shear tests. The article discusses the failure modes of composite floor shear connection, made of powder-actuated shear connectors. The influence assessment of the main detailing parameters on the strength and deformability of shear connectors was executed.  The database for analysis included the results of shear tests performed by both the authors and other researchers. According to the results of the study, the dependence of the strength and deformability of shear connectors on their height, orientation relative to the shear force vector, the strength of the concrete slab and the geometric parameters of the profiled flooring was estimated

    Progress in crystal extraction and collimation

    Get PDF
    Recent IHEP Protvino experiments show efficiencies of crystal-assisted slow extraction and collimation of 85.3+-2.8%, at the intensities of the channeled beam on the order of 10^12 proton per spill of 2 s duration. The obtained experimental data well follows the theory predictions. We compare the measurements against theory and outline the theoretical potential for further improvement in the efficiency of the technique. This success is important for the efficient use of IHEP accelerator and for implementation of crystal-assisted collimation at RHIC and slow extraction from AGS onto E952, now in preparation. Future applications, spanning in the energy from order of 1 GeV (scraping in SNS, slow extraction from COSY and medical accelerators) to order of 1 TeV and beyond (scraping in Tevatron, LHC, VLHC), can benefit from these studies.Comment: 7pp. Presented at HEACC 2001 (Tsukuba, March 25-30

    Crystal experiments on efficient beam extraction

    Get PDF
    Silicon crystal was channeling and extracting 70-GeV protons from the U-70 accelerator with efficiency of 85.3+-2.8% as measured for a beam of 10^12 protons directed towards crystals of 2 mm length in spills of 1-2 s duration. The experimental data follow very well the prediction of Monte Carlo simulations. This success is important to devise a more efficient use of the U-70 accelerator in Protvino and provides a crucial support for implementation of crystal-assisted collimation of gold ion beam in RHIC and slow extraction from AGS onto E952, now in preparation at Brookhaven Nat'l Lab. Future applications, spanning in the energy from sub-GeV (medical) to order of 1 GeV (scraping in the SNS, extraction from COSY) to order of 1 TeV and beyond (scraping in the Tevatron, LHC, VLHC), can benefit from these studies.Comment: 12pp. Presented at 19-th Intern. Conference on Atomic Collisions in Solids (ICACS-19: Paris, July 29 - August 3, 2001

    Channeling and Volume Reflection Based Crystal Collimation of Tevatron Circulating Beam Halo (T-980)

    Full text link
    The T980 crystal collimation experiment is underway at the Tevatron to determine if this technique could increase 980 GeV beam-halo collimation efficiency at high-energy hadron colliders such as the Tevatron and the LHC. T980 also studies various crystal types and parameters. The setup has been substantially enhanced during the Summer 2009 shutdown by installing a new O-shaped crystal in the horizontal goniometer, as well as adding a vertical goniometer with two alternating crystals (O-shaped and multi-strip) and additional beam diagnostics. First measurements with the new system are quite encouraging, with channeled and volume-reflected beams observed on the secondary collimators as predicted. Investigation of crystal collimation efficiencies with crystals in volume reflection and channeling modes are described in comparison with an amorphous primary collimator. Results on the system performance are presented for the end-of-store studies and for entire collider stores. The first investigation of colliding beam collimation simultaneously using crystals in both the vertical and horizontal plane has been made in the regime with horizontally channeled and vertically volume-reflected beams. Planning is underway for significant hardware improvements during the FY10 summer shutdown and for dedicated studies during the final year of Tevatron operation and also for a "post-collider beam physics running" period.Comment: 3 pp. 1st International Particle Accelerator Conference: IPAC'10, 23-28 May 2010: Kyoto, Japa
    corecore