5,049 research outputs found
Fiber R and D for the CMS HCAL
This paper documents the fiber R and D for the CMS hadron barrel calorimeter
(HCAL). The R and D includes measurements of fiber flexibility, splicing,
mirror reflectivity, relative light yield, attenuation length, radiation
effects, absolute light yield, and transverse tile uniformity. Schematics of
the hardware for each measurement are shown. These studies are done for
different diameters and kinds of multiclad fiber.Comment: 23 pages, 30 Figures 89 pages, 41 figures, corresponding author: H.
Budd, [email protected]
Evaluating the Evolutionary Origins of Unexpected Character Distributions within the Bacterial Planctomycetes-Verrucomicrobia-Chlamydiae Superphylum
Recently, several characters that are absent from most bacteria, but which are found in many eukaryotes or archaea, have been identified within the bacterial Planctomycetes-Verrucomicrobia-Chlamydiae (PVC) superphylum. Hypotheses of the evolutionary history of such characters are commonly based on the inference of phylogenies of gene or protein families associated with the traits, estimated from multiple sequence alignments (MSAs). So far, studies of this kind have focused on the distribution of (i) two genes involved in the synthesis of sterol, (ii) tubulin genes, and (iii) c1 transfer genes. In many cases, these analyses have concluded that horizontal gene transfer (HGT) is likely to have played a role in shaping the taxonomic distribution of these gene families. In this article, we describe several issues with the inference of HGT from such analyses, in particular concerning the considerable uncertainty associated with our estimation of both gene family phylogenies (especially those containing ancient lineage divergences) and the Tree of Life (ToL), and the need for wider use and further development of explicit probabilistic models to compare hypotheses of vertical and horizontal genetic transmission. We suggest that data which is often taken as evidence for the occurrence of ancient HGT events may not be as convincing as is commonly described, and consideration of alternative theories is recommended. While focusing on analyses including PVCs, this discussion is also relevant for inferences of HGT involving other groups of organisms
A heat transfer with a source: the complete set of invariant difference schemes
In this letter we present the set of invariant difference equations and
meshes which preserve the Lie group symmetries of the equation
u_{t}=(K(u)u_{x})_{x}+Q(u). All special cases of K(u) and Q(u) that extend the
symmetry group admitted by the differential equation are considered. This paper
completes the paper [J. Phys. A: Math. Gen. 30, no. 23 (1997) 8139-8155], where
a few invariant models for heat transfer equations were presented.Comment: arxiv version is already officia
Difference schemes with point symmetries and their numerical tests
Symmetry preserving difference schemes approximating second and third order
ordinary differential equations are presented. They have the same three or
four-dimensional symmetry groups as the original differential equations. The
new difference schemes are tested as numerical methods. The obtained numerical
solutions are shown to be much more accurate than those obtained by standard
methods without an increase in cost. For an example involving a solution with a
singularity in the integration region the symmetry preserving scheme, contrary
to standard ones, provides solutions valid beyond the singular point.Comment: 26 pages 7 figure
Laser Chemosensor with Rapid Responsivity and Inherent Memory Based on a Polymer of Intrinsic Microporosity
This work explores the use of a polymer of intrinsic microporosity (PIM-1) as the active layer within a laser sensor to detect nitroaromatic-based explosive vapors. We show successful detection of dinitrobenzene (DNB) by monitoring the real-time photoluminescence. We also show that PIM-1 has an inherent memory, so that it accumulates the analyte during exposure. In addition, the optical gain and refractive index of the polymer were studied by amplified spontaneous emission and variable-angle ellipsometry, respectively. A second-order distributed feedback PIM-1 laser sensor was fabricated and found to show an increase in laser threshold of 2.5 times and a reduction of the laser slope efficiency by 4.4 times after a 5-min exposure to the DNB vapor. For pumping at 2 times threshold, the lasing action was stopped within 30 s indicating that PIM-1 has a very fast responsivity and as such has a potential sensing ability for ultra-low-concentration explosives
All electromagnetic form factors
The electromagnetic form factors of spin-1/2 particles are known, but due to
historical reasons only half of them are found in many textbooks. Given the
importance of the general result, its model independence, its connection to
discrete symmetries and their violations we made an effort to derive and
present the general result based only on the knowledge of Dirac equation. We
discuss the phenomenology connected directly with the form factors, and spin
precession in external fields including time reversal violating terms. We apply
the formalism to spin-flip synchrotron radiation and suggest pedagogical
projects.Comment: Latex, 22 page
The Origin of Power-Law Emergent Scaling in Large Binary Networks
In this paper we study the macroscopic conduction properties of large but
finite binary networks with conducting bonds. By taking a combination of a
spectral and an averaging based approach we derive asymptotic formulae for the
conduction in terms of the component proportions p and the total number of
components N. These formulae correctly identify both the percolation limits and
also the emergent power law behaviour between the percolation limits and show
the interplay between the size of the network and the deviation of the
proportion from the critical value of p = 1/2. The results compare excellently
with a large number of numerical simulations
A Study of Equivalent and Stubborn Mutation Operators using Human Analysis of Equivalence
Though mutation testing has been widely studied for more than thirty years, the prevalence and properties of equivalent mutants remain largely unknown. We report on the causes and prevalence of equivalent mutants and their relationship to stubborn mutants (those that remain undetected by a high quality test suite, yet are non-equivalent). Our results, based on manual analysis of 1,230 mutants from 18 programs, reveal a highly uneven distribution of equivalence and stubbornness. For example, the ABS class and half UOI class generate many equivalent and almost no stubborn mutants, while the LCR class generates many stubborn and few equivalent mutants. We conclude that previous test effectiveness studies based on fault seeding could be skewed, while developers of mutation testing tools should prioritise those operators that we found generate disproportionately many stubborn (and few equivalent) mutants
- …