15,962 research outputs found

    Floquet topological transitions in extended Kane-Mele models with disorder

    Get PDF
    In this work we use Floquet theory to theoretically study the influence of circularly polarized light on disordered two-dimensional models exhibiting topological transitions. We find circularly polarized light can induce a topological transition in extended Kane-Mele models that include additional hopping terms and on-site disorder. The topological transitions are understood from the Floquet-Bloch band structure of the clean system at high symmetry points in the first Brillouin zone. The light modifies the equilibrium band structure of the clean system in such a way that the smallest gap in the Brillouin zone can be shifted from the MM points to the K(K′)K(K') points, the Γ\Gamma point, or even other lower symmetry points. The movement of the minimal gap point through the Brillouin zone as a function of laser parameters is explained in the high frequency regime through the Magnus expansion. In the disordered model, we compute the Bott index to reveal topological phases and transitions. The disorder can induce transitions from topologically non-trivial states to trivial states or vice versa, both examples of Floquet topological Anderson transitions. As a result of the movement of the minimal gap point through the Brillouin zone as a function of laser parameters, the nature of the topological phases and transitions is laser-parameter dependent--a contrasting behavior to the Kane-Mele model.Comment: 10 pages, 7 figure

    Community learning and development training for professionals engaged in community regeneration and community planning

    Get PDF
    The study was commissioned by the Scottish Executive Development Department to identify training needs and current provision of community learning and development (CLD) training for a range of professionals (other than those formally qualified in CLD) who are engaged in community regeneration and community planning (Local Government in Scotland Act 2003). It was one of a series of studies emanating from the Scottish Executive response to the review: „Empowered to Practice – the future of community learning and development training in Scotland‟. One of the themes of the report taken up by the Scottish Executive was the need for; „wider opportunities for joint training with other disciplines such as teachers, librarians, college lecturers, health workers and social workers‟

    Leveraging Leadership in Public Health Middle Management [Dissertation Notice]

    Get PDF

    A flow equation approach to periodically driven quantum systems

    Full text link
    We present a theoretical method to generate a highly accurate {\em time-independent} Hamiltonian governing the finite-time behavior of a time-periodic system. The method exploits infinitesimal unitary transformation steps, from which renormalization group-like flow equations are derived to produce the effective Hamiltonian. Our tractable method has a range of validity reaching into frequency regimes that are usually inaccessible via high frequency ω\omega expansions in the parameter h/ωh/\omega, where hh is the upper limit for the strength of local interactions. We demonstrate our approach on both interacting and non-interacting many-body Hamiltonians where it offers an improvement over the more well-known Magnus expansion and other high frequency expansions. For the interacting models, we compare our approximate results to those found via exact diagonalization. While the approximation generally performs better globally than other high frequency approximations, the improvement is especially pronounced in the regime of lower frequencies and strong external driving. This regime is of special interest because of its proximity to the resonant regime where the effect of a periodic drive is the most dramatic. Our results open a new route towards identifying novel non-equilibrium regimes and behaviors in driven quantum many-particle systems.Comment: 25 pages, 14 figure

    An investigation of pulsar searching techniques with the Fast Folding Algorithm

    Full text link
    Here we present an in-depth study of the behaviour of the Fast Folding Algorithm, an alternative pulsar searching technique to the Fast Fourier Transform. Weaknesses in the Fast Fourier Transform, including a susceptibility to red noise, leave it insensitive to pulsars with long rotational periods (P > 1 s). This sensitivity gap has the potential to bias our understanding of the period distribution of the pulsar population. The Fast Folding Algorithm, a time-domain based pulsar searching technique, has the potential to overcome some of these biases. Modern distributed-computing frameworks now allow for the application of this algorithm to all-sky blind pulsar surveys for the first time. However, many aspects of the behaviour of this search technique remain poorly understood, including its responsiveness to variations in pulse shape and the presence of red noise. Using a custom CPU-based implementation of the Fast Folding Algorithm, ffancy, we have conducted an in-depth study into the behaviour of the Fast Folding Algorithm in both an ideal, white noise regime as well as a trial on observational data from the HTRU-S Low Latitude pulsar survey, including a comparison to the behaviour of the Fast Fourier Transform. We are able to both confirm and expand upon earlier studies that demonstrate the ability of the Fast Folding Algorithm to outperform the Fast Fourier Transform under ideal white noise conditions, and demonstrate a significant improvement in sensitivity to long-period pulsars in real observational data through the use of the Fast Folding Algorithm.Comment: 19 pages, 15 figures, 3 table

    Ruling out a higher spin field solution to the cosmological constant problem

    Full text link
    We consider the modification of Newton's gravity law in Dolgov's higher spin models designed to compensate the cosmological constant. We find that the effective Planck mass is unacceptably large in these models. We also point out that the properties of gravitational waves are entirely different in these models as compared to general relativity.Comment: 7 pages, LaTe

    Risk factors for failure of outpatient parenteral antibiotic therapy (OPAT) in infective endocarditis

    Get PDF
    Objectives: To identify risk factors for failure of outpatient antibiotic therapy (OPAT) in infective endocarditis (IE). Patients and methods: We identified IE cases managed at a single centre over 12 years from a prospectively maintained database. ‘OPAT failure’ was defined as unplanned readmission or antibiotic switch due to adverse drug reaction or antibiotic resistance. We analysed patient and disease-related risk factors for OPAT failure by univariate and multivariate logistic regression. We also retrospectively collected follow-up data on adverse disease outcome (defined as IE-related death or relapse) and performed Kaplan–Meier survival analysis up to 36 months following OPAT. Results: We identified 80 episodes of OPAT in IE. Failure occurred in 25/80 episodes (31.3%). On multivariate analysis, cardiac or renal failure [pooled OR 7.39 (95% CI 1.84–29.66), P = 0.005] and teicoplanin therapy [OR 8.69 (95% CI 2.01–37.47), P = 0.004] were independently associated with increased OPAT failure. OPAT failure with teicoplanin occurred despite therapeutic plasma levels. OPAT failure predicted adverse disease outcome up to 36 months (P = 0.016 log-rank test). Conclusions: These data caution against selecting patients with endocarditis for OPAT in the presence of cardiac or renal failure and suggest teicoplanin therapy may be associated with suboptimal OPAT outcomes. Alternative regimens to teicoplanin in the OPAT setting should be further investigated

    Visualisation Tools for Multi-Perspective, Cross-Sector, Long-Term Infrastructure Performance Evaluation

    Get PDF
    Across different infrastructure sectors there are systems that help to monitor the current and near-future operation and performance of a particular system. Whilst Supervisory Control and Data Acquisition (SCADA) systems are critical to maintaining acceptable levels of functionality, they do not provide insights over the longer timescales across which strategic investment decisions play out. To understand how individual or multiple, interdependent, infrastructure sectors perform over longer timescales, capacity/demand modelling is required. However, the outputs of such models are often a complex high-dimensionality result-set, and this complexity is further compounded when crosssector evaluation is required. To maximise utility of such models, tools are required that can process and present key outputs. In this paper we describe the development of prototype tools for infrastructure performance evaluation in relation to different strategic decisions and the complex outputs generated from capacity and demand models of five infrastructure sectors (energy, water, waste water, solid waste, transport) investigated within the UK Infrastructure Transitions Research Consortium (ITRC). By constructing tools that expose various dimensions of the model outputs, a user is able to take greater control over the knowledge discovery process
    • …
    corecore