26,251 research outputs found

    Time-reversal symmetry breaking in noncentrosymmetric superconductor Re6Hf:further evidence for unconventional behaviour in the alpha-Mn family of materials

    Get PDF
    The discovery of new families of unconventional superconductors is important both experimentally and theoretically, especially if it challenges current models and thinking. By using muon spin relaxation in zero-field, time-reversal symmetry breaking has been observed in Re6Hf. Moreover, the temperature dependence of the superfluid density exhibits s-wave superconductivity with an enhanced electron-phonon coupling. This, coupled with the results from isostructural Re6Zr, shows that the Re6X family are indeed a new and important group of unconventional superconductors.Comment: 5 pages, 2 figures Accepted Physical Review B, Rapid Communicatio

    Superconducting and normal-state properties of the noncentrosymmetric superconductor Re6Zr

    Get PDF
    We systematically investigate the normal and superconducting properties of non-centrosymmetric Re6_{6}Zr using magnetization, heat capacity, and electrical resistivity measurements. Resistivity measurements indicate Re6_{6}Zr has poor metallic behavior and is dominated by disorder. Re6_6Zr undergoes a superconducting transition at Tc=(6.75±0.05)T_{\mathrm{c}} = \left(6.75\pm0.05\right) K. Magnetization measurements give a lower critical field, μ0Hc1=(10.3±0.1)\mu_{0}H_{\mathrm{c1}} = \left(10.3 \pm 0.1\right) mT. The Werthamer-Helfand-Hohenberg model is used to approximate the upper critical field μ0Hc2=(11.2±0.2)\mu_{0}H_{\mathrm{c2}} = \left(11.2 \pm 0.2\right) T which is close to the Pauli limiting field of 12.35 T and which could indicate singlet-triplet mixing. However, low-temperature specific-heat data suggest that Re6_{6}Zr is an isotropic, fully gapped s-wave superconductor with enhanced electron-phonon coupling. Unusual flux pinning resulting in a peak effect is observed in the magnetization data, indicating an unconventional vortex state.Comment: 11 pages, 7 figures, 2 table

    Probing the superconducting ground state of the noncentrosymmetric superconductors CaTSi3 (T = Ir, Pt) using muon-spin relaxation and rotation

    Full text link
    The superconducting properties of CaTSi3 (where T = Pt and Ir) have been investigated using muon spectroscopy. Our muon-spin relaxation results suggest that in both these superconductors time-reversal symmetry is preserved, while muon-spin rotation data show that the temperature dependence of the superfluid density is consistent with an isotropic s-wave gap. The magnetic penetration depths and upper critical fields determined from our transverse-field muon-spin rotation spectra are found to be 448(6) and 170(6) nm, and 3800(500) and 1700(300) G, for CaPtSi3 and CaIrSi3 respectively. The superconducting coherence lengths of the two materials have also been determined and are 29(2) nm for CaPtSi3 and 44(4) nm for CaIrSi3.Comment: 6 pages, 7 figure

    Studies of the superconducting properties of Sn1-xInxTe (x=0.38 to 0.45) using muon-spin spectroscopy

    Full text link
    The superconducting properties of Sn1-xInxTe (x = 0.38 to 0.45) have been studied using magnetization and muon-spin rotation or relaxation (muSR) measurements. These measurements show that the superconducting critical temperature Tc of Sn1-xInxTe increases with increasing x, reaching a maximum at around 4.8 K for x = 0.45. Zero-field muSR results indicate that time-reversal symmetry is preserved in this material. Transverse-field muon-spin rotation has been used to study the temperature dependence of the magnetic penetration depth lambda(T) in the mixed state. For all the compositions studied, lambda(T) can be well described using a single-gap s-wave BCS model. The magnetic penetration depth at zero temperature lambda(0) ranges from 500 to 580 nm. Both the superconducting gap Delta(0) at 0 K and the gap ratio Delta(0)/kBTc indicate that Sn1-xInxTe (x = 0.38 to 0.45) should be considered as a superconductor with intermediate to strong coupling.Comment: 7 pages, 6 figures, 3 table

    Astrophysical SS factor for the 15N(p,γ)16O{}^{15}{\rm N}(p,\gamma){}^{16}{\rm O} reaction from RR-matrix analysis and asymptotic normalization coefficient for 16O→15N+p{}^{16}{\rm O} \to {}^{15}{\rm N} + p. Is any fit acceptable?

    Get PDF
    The 15N(p,γ)16O^{15}{\rm N}(p,\gamma)^{16}{\rm O} reaction provides a path from the CN cycle to the CNO bi-cycle and CNO tri-cycle. The measured astrophysical factor for this reaction is dominated by resonant capture through two strong Jπ=1−J^{\pi}=1^{-} resonances at ER=312E_{R}= 312 and 962 keV and direct capture to the ground state. Recently, a new measurement of the astrophysical factor for the 15N(p,γ)16O^{15}{\rm N}(p,\gamma)^{16}{\rm O} reaction has been published [P. J. LeBlanc {\it et al.}, Phys. Rev. {\bf C 82}, 055804 (2010)]. The analysis has been done using the RR-matrix approach with unconstrained variation of all parameters including the asymptotic normalization coefficient (ANC). The best fit has been obtained for the square of the ANC C2=539.2C^{2}= 539.2 fm−1{}^{-1}, which exceeds the previously measured value by a factor of ≈3\approx 3. Here we present a new RR-matrix analysis of the Notre Dame-LUNA data with the fixed within the experimental uncertainties square of the ANC C2=200.34C^{2}=200.34 fm−1{}^{-1}. Rather than varying the ANC we add the contribution from a background resonance that effectively takes into account contributions from higher levels. Altogether we present 8 fits, five unconstrained and three constrained. In all the fits the ANC is fixed at the previously determined experimental value C2=200.34C^{2}=200.34 fm−1{}^{-1}. For the unconstrained fit with the boundary condition Bc=Sc(E2)B_{c}=S_{c}(E_{2}), where E2E_{2} is the energy of the second level, we get S(0)=39.0±1.1S(0)=39.0 \pm 1.1 keVb and normalized χ~2=1.84{\tilde \chi}^{2}=1.84, i.e. the result which is similar to [P. J. LeBlanc {\it et al.}, Phys. Rev. {\bf C 82}, 055804 (2010)]. From all our fits we get the range 33.1≤S(0)≤40.133.1 \leq S(0) \leq 40.1 keVb which overlaps with the result of [P. J. LeBlanc {\it et al.}, Phys. Rev. {\bf C 82}, 055804 (2010)]. We address also physical interpretation of the fitting parameters.Comment: Submitted to PR

    The structure of the hard sphere solid

    Full text link
    We show that near densest-packing the perturbations of the HCP structure yield higher entropy than perturbations of any other densest packing. The difference between the various structures shows up in the correlations between motions of nearest neighbors. In the HCP structure random motion of each sphere impinges slightly less on the motion of its nearest neighbors than in the other structures.Comment: For related papers see: http://www.ma.utexas.edu/users/radin/papers.htm

    Probing the superconducting ground state of the rare-earth ternary boride superconductors RRRuB2_2 (RR = Lu,Y) using muon-spin rotation and relaxation

    Get PDF
    The superconductivity in the rare-earth transition metal ternary borides RRRuB2_2 (where RR = Lu and Y) has been investigated using muon-spin rotation and relaxation. Measurements made in zero-field suggest that time-reversal symmetry is preserved upon entering the superconducting state in both materials; a small difference in depolarization is observed above and below the superconducting transition in both compounds, however this has been attributed to quasistatic magnetic fluctuations. Transverse-field measurements of the flux-line lattice indicate that the superconductivity in both materials is fully gapped, with a conventional s-wave pairing symmetry and BCS-like magnitudes for the zero-temperature gap energies. The electronic properties of the charge carriers in the superconducting state have been calculated, with effective masses m∗/me=m^*/ m_\mathrm{e} = 9.8±0.19.8\pm0.1 and 15.0±0.115.0\pm0.1 in the Lu and Y compounds, respectively, with superconducting carrier densities ns=n_\mathrm{s} = (2.73±0.042.73\pm0.04) ×1028\times 10^{28} m−3^{-3} and (2.17±0.022.17\pm0.02) ×1028\times 10^{28} m−3^{-3}. The materials have been classified according to the Uemura scheme for superconductivity, with values for Tc/TFT_\mathrm{c}/T_\mathrm{F} of 1/(414±6)1/(414\pm6) and 1/(304±3)1/(304\pm3), implying that the superconductivity may not be entirely conventional in nature.Comment: 8 pages, 8 figure

    Thinking Forward through the Past: Prospecting for Urban Order in (Victorian) Public Parks

    Get PDF
    Supplementing familiar linear and chronological accounts of history, we delineate a novel approach that explores connections between past, present and future. Drawing on Koselleck, we outline a framework for analysing the interconnected categories of ‘spaces of experience’ and ‘horizons of expectation’ across times. We consider the visions and anxieties of futures past and futures present; how these are constituted by, and inform, experiences that have happened and are yet to come. This conceptual frame is developed through the study of the heritage and lived experiences of a specific Victorian park within an English city. We analyse the formation of urban order as a lens to interrogate both the immediate and long-term linkages between past, present and possible futures. This approach enables us to ground analysis of prospects for urban relations in historical perspective and to pose fundamental questions about the social role of urban parks

    Identification of winter wheat from ERTS-1 imagery

    Get PDF
    Continuing interpretation of the test area in Finney County, Kansas, has revealed that winter wheat can be successfully identified. This successful identification is based on human recognition of tonal signatures on MSS images. Several different but highly successful interpretation strategies have been employed. These strategies involve the use of both spectral and temporal inputs. Good results have been obtained from a single MSS-5 image acquired at a critical time in the crop cycle (planting). On a test sample of 54,612 acres, 89 percent of the acreage was correctly classified as wheat or non-wheat and the estimated wheat acreage (19,516 acres) was 99 percent of the actual acreage of wheat in the sample area
    • …
    corecore