68 research outputs found

    Electron density and transport in top-gated graphene nanoribbon devices: First-principles Green function algorithms for systems containing large number of atoms

    Full text link
    The recent fabrication of graphene nanoribbon (GNR) field-effect transistors poses a challenge for first-principles modeling of carbon nanoelectronics due to many thousand atoms present in the device. The state of the art quantum transport algorithms, based on the nonequilibrium Green function formalism combined with the density functional theory (NEGF-DFT), were originally developed to calculate self-consistent electron density in equilibrium and at finite bias voltage (as a prerequisite to obtain conductance or current-voltage characteristics, respectively) for small molecules attached to metallic electrodes where only a few hundred atoms are typically simulated. Here we introduce combination of two numerically efficient algorithms which make it possible to extend the NEGF-DFT framework to device simulations involving large number of atoms. We illustrate fusion of these two algorithms into the NEGF-DFT-type code by computing charge transfer, charge redistribution and conductance in zigzag-GNR/variable-width-armchair-GNR/zigzag-GNR two-terminal device covered with a gate electrode made of graphene layer as well. The total number of carbon and edge-passivating hydrogen atoms within the simulated central region of this device is ~7000. Our self-consistent modeling of the gate voltage effect suggests that rather large gate voltage might be required to shift the band gap of the proposed AGNR interconnect and switch the transport from insulating into the regime of a single open conducting channel.Comment: 19 pages, 8 PDF figures, PDFLaTe

    Characterization of nanometer-sized, mechanically exfoliated graphene on the H-passivated Si(100) surface using scanning tunnelling microscopy

    Full text link
    We have developed a method for depositing graphene monolayers and bilayers with minimum lateral dimensions of 2-10 nm by the mechanical exfoliation of graphite onto the Si(100)-2x1:H surface. Room temperature, ultra-high vacuum (UHV) tunnelling spectroscopy measurements of nanometer-sized single-layer graphene reveal a size dependent energy gap ranging from 0.1-1 eV. Furthermore, the number of graphene layers can be directly determined from scanning tunnelling microscopy (STM) topographic contours. This atomistic study provides an experimental basis for probing the electronic structure of nanometer-sized graphene which can assist the development of graphene-based nanoelectronics.Comment: Accepted for publication in Nanotechnolog

    DNA nucleotide-specific modulation of \mu A transverse edge currents through a metallic graphene nanoribbon with a nanopore

    Full text link
    We propose two-terminal devices for DNA sequencing which consist of a metallic graphene nanoribbon with zigzag edges (ZGNR) and a nanopore in its interior through which the DNA molecule is translocated. Using the nonequilibrium Green functions combined with density functional theory, we demonstrate that each of the four DNA nucleotides inserted into the nanopore, whose edge carbon atoms are passivated by either hydrogen or nitrogen, will lead to a unique change in the device conductance. Unlike other recent biosensors based on transverse electronic transport through DNA nucleotides, which utilize small (of the order of pA) tunneling current across a nanogap or a nanopore yielding a poor signal-to-noise ratio, our device concept relies on the fact that in ZGNRs local current density is peaked around the edges so that drilling a nanopore away from the edges will not diminish the conductance. Inserting a DNA nucleotide into the nanopore affects the charge density in the surrounding area, thereby modulating edge conduction currents whose magnitude is of the order of \mu A at bias voltage ~ 0.1 V. The proposed biosensor is not limited to ZGNRs and it could be realized with other nanowires supporting transverse edge currents, such as chiral GNRs or wires made of two-dimensional topological insulators.Comment: 6 pages, 6 figures, PDFLaTe

    Towards Graphene Nanoribbon-based Electronics

    Full text link
    The successful fabrication of single layer graphene has greatly stimulated the progress of the research on graphene. In this article, focusing on the basic electronic and transport properties of graphene nanoribbons (GNRs), we review the recent progress of experimental fabrication of GNRs, and the theoretical and experimental investigations of physical properties and device applications of GNRs. We also briefly discuss the research efforts on the spin polarization of GNRs in relation to the edge states.Comment: 9pages,10figure

    "Narrow" Graphene Nanoribbons Made Easier by Partial Hydrogenation

    Full text link
    It is a challenge to synthesize graphene nanoribbons (GNRs) with narrow widths and smooth edges in large scale. Our first principles study on the hydrogenation of GNRs shows that the hydrogenation starts from the edges of GNRs and proceeds gradually toward the middle of the GNRs so as to maximize the number of carbon-carbon π\pi-π\pi bonds. Furthermore, the partially hydrogenated wide GNRs have similar electronic and magnetic properties as those of narrow GNRs. Therefore, it is not necessary to directly produce narrow GNRs for realistic applications because partial hydrogenation could make wide GNRs "narrower"

    Electron Wave Function in Armchair Graphene Nanoribbons

    Full text link
    By using analytical solution of a tight-binding model for armchair nanoribbons, it is confirmed that the solution represents the standing wave formed by intervalley scattering and that pseudospin is invariant under the scattering. The phase space of armchair nanoribbon which includes a single Dirac singularity is specified. By examining the effects of boundary perturbations on the wave function, we suggest that the existance of a strong boundary potential is inconsistent with the observation in a recent scanning tunneling microscopy. Some of the possible electron-density superstructure patterns near a step armchair edge located on top of graphite are presented. It is demonstrated that a selection rule for the G band in Raman spectroscopy can be most easily reproduced with the analytical solution.Comment: 7 pages, 4 figure

    Spin Channels in Functionalized Graphene Nanoribbons

    Full text link
    We characterize the transport properties of functionalized graphene nanoribbons using extensive first-principles calculations based on density functional theory (DFT) that encompass both monovalent and divalent ligands, hydrogenated defects and vacancies. We find that the edge metallic states are preserved under a variety of chemical environments, while bulk conducting channels can be easily destroyed by either hydrogenation or ion or electron beams, resulting in devices that can exhibit spin conductance polarization close to unity.Comment: 14 pages, 5 figure

    Chemically-induced Mobility Gaps in Graphene Nanoribbons: A Route for Upscaling Device Performances

    Full text link
    We report a first-principles based study of mesoscopic quantum transport in chemically doped graphene nanoribbons with a width up to 10 nm. The occurrence of quasibound states related to boron impurities results in mobility gaps as large as 1 eV, driven by strong electron-hole asymmetrical backscattering phenomena. This phenomenon opens new ways to overcome current limitations of graphene-based devices through the fabrication of chemically-doped graphene nanoribbons with sizes within the reach of conventional lithography.Comment: Nano Letters (in press

    Excitons, biexcitons, and phonons in ultrathin CdSe/ZnSe quantum structures

    Get PDF
    The optical properties of CdSe nanostructures grown by migration-enhanced epitaxy of CdSe on ZnSe are studied by time-, energy-, and temperature-dependent photoluminescence and excitation spectroscopy, as well as by polarization-dependent four-wave mixing and two-photon absorption experiments. The nanostructures consist of a coherently strained Zn1−xCdxSe/ZnSe quantum well with embedded islands of higher Cd content with sizes of a few nanometer due to strain-induced CdSe accumulation. The local increase in CdSe concentration results in a strong localization of the excitonic wave function, in an increase in radiative lifetime, and a decrease of the dephasing rate. Local LO-phonon modes caused by the strong modulation of the Cd concentration profile are found in phonon-assisted relaxation processes. Confined biexcitons with large binding energies between 20 and 24 meV are observed, indicating the important role of biexcitons even at room temperature
    corecore