6,006 research outputs found

    Heisenberg-limited qubit readout with two-mode squeezed light

    Get PDF
    We show how to use two-mode squeezed light to exponentially enhance cavity-based dispersive qubit measurement. Our scheme enables true Heisenberg-limited scaling of the measurement, and crucially, is not restricted to small dispersive couplings or unrealistically long measurement times. It involves coupling a qubit dispersively to two cavities, and making use of a symmetry in the dynamics of joint cavity quadratures (a so-called quantum-mechanics-free subsystem). We discuss the basic scaling of the scheme and its robustness against imperfections, as well as a realistic implementation in circuit quantum electrodynamics.Comment: 5 pages, 4 figures, Supplemental Materia

    Bath's law Derived from the Gutenberg-Richter law and from Aftershock Properties

    Get PDF
    The empirical Bath's law states that the average difference in magnitude between a mainshock and its largest aftershock is 1.2, regardless of the mainshock magnitude. Following Vere-Jones [1969] and Console et al. [2003], we show that the origin of Bath's law is to be found in the selection procedure used to define mainshocks and aftershocks rather than in any difference in the mechanisms controlling the magnitude of the mainshock and of the aftershocks. We use the ETAS model of seismicity, which provides a more realistic model of aftershocks, based on (i) a universal Gutenberg-Richter (GR) law for all earthquakes, and on (ii) the increase of the number of aftershocks with the mainshock magnitude. Using numerical simulations of the ETAS model, we show that this model is in good agreement with Bath's law in a certain range of the model parameters.Comment: major revisions, in press in Geophys. Res. Let

    Software-defined networking: guidelines for experimentation and validation in large-scale real world scenarios

    Get PDF
    Part 1: IIVC WorkshopInternational audienceThis article thoroughly details large-scale real world experiments using Software-Defined Networking in the testbed setup. More precisely, it provides a description of the foundation technology behind these experiments, which in turn is focused around OpenFlow and on the OFELIA testbed. In this testbed preliminary experiments were performed in order to tune up settings and procedures, analysing the encountered problems and their respective solutions. A methodology consisting of five large-scale experiments is proposed in order to properly validate and improve the evaluation techniques used in OpenFlow scenarios

    Non-Parametric Analyses of Log-Periodic Precursors to Financial Crashes

    Full text link
    We apply two non-parametric methods to test further the hypothesis that log-periodicity characterizes the detrended price trajectory of large financial indices prior to financial crashes or strong corrections. The analysis using the so-called (H,q)-derivative is applied to seven time series ending with the October 1987 crash, the October 1997 correction and the April 2000 crash of the Dow Jones Industrial Average (DJIA), the Standard & Poor 500 and Nasdaq indices. The Hilbert transform is applied to two detrended price time series in terms of the ln(t_c-t) variable, where t_c is the time of the crash. Taking all results together, we find strong evidence for a universal fundamental log-frequency f=1.02±0.05f = 1.02 \pm 0.05 corresponding to the scaling ratio λ=2.67±0.12\lambda = 2.67 \pm 0.12. These values are in very good agreement with those obtained in past works with different parametric techniques.Comment: Latex document 13 pages + 58 eps figure

    Multiplicative processes and power laws

    Full text link
    [Takayasu et al., Phys. Rev.Lett. 79, 966 (1997)] revisited the question of stochastic processes with multiplicative noise, which have been studied in several different contexts over the past decades. We focus on the regime, found for a generic set of control parameters, in which stochastic processes with multiplicative noise produce intermittency of a special kind, characterized by a power law probability density distribution. We briefly explain the physical mechanism leading to a power law pdf and provide a list of references for these results dating back from a quarter of century. We explain how the formulation in terms of the characteristic function developed by Takayasu et al. can be extended to exponents Ό>2\mu >2, which explains the ``reason of the lucky coincidence''. The multidimensional generalization of (\ref{eq1}) and the available results are briefly summarized. The discovery of stretched exponential tails in the presence of the cut-off introduced in \cite{Taka} is explained theoretically. We end by briefly listing applications.Comment: Extended version (7 pages). Phys. Rev. E (to appear April 1998

    Predicted and Verified Deviations from Zipf's law in Ecology of Competing Products

    Full text link
    Zipf's power-law distribution is a generic empirical statistical regularity found in many complex systems. However, rather than universality with a single power-law exponent (equal to 1 for Zipf's law), there are many reported deviations that remain unexplained. A recently developed theory finds that the interplay between (i) one of the most universal ingredients, namely stochastic proportional growth, and (ii) birth and death processes, leads to a generic power-law distribution with an exponent that depends on the characteristics of each ingredient. Here, we report the first complete empirical test of the theory and its application, based on the empirical analysis of the dynamics of market shares in the product market. We estimate directly the average growth rate of market shares and its standard deviation, the birth rates and the "death" (hazard) rate of products. We find that temporal variations and product differences of the observed power-law exponents can be fully captured by the theory with no adjustable parameters. Our results can be generalized to many systems for which the statistical properties revealed by power law exponents are directly linked to the underlying generating mechanism

    An Ultrasoft X-ray Flare from 3XMM J152130.7+074916: a Tidal Disruption Event Candidate

    Full text link
    We report on the discovery of an ultrasoft X-ray transient source, 3XMM J152130.7+074916. It was serendipitously detected in an XMM-Newton observation on 2000 August 23, and its location is consistent with the center of the galaxy SDSS J152130.72+074916.5 (z=0.17901 and d_L=866 Mpc). The high-quality X-ray spectrum can be fitted with a thermal disk with an apparent inner disk temperature of 0.17 keV and a rest-frame 0.24-11.8 keV unabsorbed luminosity of ~5e43 erg/s, subject to a fast-moving warm absorber. Short-term variability was also clearly observed, with the spectrum being softer at lower flux. The source was covered but not detected in a Chandra observation on 2000 April 3, a Swift observation on 2005 September 10, and a second XMM-Newton observation on 2014 January 19, implying a large variability (>260) of the X-ray flux. The optical spectrum of the candidate host galaxy, taken ~11 yrs after the XMM-Newton detection, shows no sign of nuclear activity. This, combined with its transient and ultrasoft properties, leads us to explain the source as tidal disruption of a star by the supermassive black hole in the galactic center. We attribute the fast-moving warm absorber detected in the first XMM-Newton observation to the super-Eddington outflow associated with the event and the short-term variability to a disk instability that caused fast change of the inner disk radius at a constant mass accretion rate.Comment: 9 pages, 5 figures. ApJ, in pres

    Two-dimensional quantum liquids from interacting non-Abelian anyons

    Full text link
    A set of localized, non-Abelian anyons - such as vortices in a p_x + i p_y superconductor or quasiholes in certain quantum Hall states - gives rise to a macroscopic degeneracy. Such a degeneracy is split in the presence of interactions between the anyons. Here we show that in two spatial dimensions this splitting selects a unique collective state as ground state of the interacting many-body system. This collective state can be a novel gapped quantum liquid nucleated inside the original parent liquid (of which the anyons are excitations). This physics is of relevance for any quantum Hall plateau realizing a non-Abelian quantum Hall state when moving off the center of the plateau.Comment: 5 pages, 6 figure
    • 

    corecore