Zipf's power-law distribution is a generic empirical statistical regularity
found in many complex systems. However, rather than universality with a single
power-law exponent (equal to 1 for Zipf's law), there are many reported
deviations that remain unexplained. A recently developed theory finds that the
interplay between (i) one of the most universal ingredients, namely stochastic
proportional growth, and (ii) birth and death processes, leads to a generic
power-law distribution with an exponent that depends on the characteristics of
each ingredient. Here, we report the first complete empirical test of the
theory and its application, based on the empirical analysis of the dynamics of
market shares in the product market. We estimate directly the average growth
rate of market shares and its standard deviation, the birth rates and the
"death" (hazard) rate of products. We find that temporal variations and product
differences of the observed power-law exponents can be fully captured by the
theory with no adjustable parameters. Our results can be generalized to many
systems for which the statistical properties revealed by power law exponents
are directly linked to the underlying generating mechanism