1,090 research outputs found

    Differential features of muscle fiber atrophy in osteoporosis and osteoarthritis

    Get PDF
    We demonstrated that osteoporosis is associated with a preferential type II muscle fiber atrophy, which correlates with bone mineral density and reduced levels of Akt, a major regulator of muscle mass. In osteoarthritis, muscle atrophy is of lower extent and related to disease duration and severity. INTRODUCTION: Osteoarthritis (OA) and osteoporosis (OP) are associated with loss of muscle bulk and power. In these diseases, morphological studies on muscle tissue are lacking, and the underlying mechanisms of muscle atrophy are not known. The aim of our study was to evaluate the OP- or OA-related muscle atrophy and its correlation with severity of disease. Muscle levels of Akt protein, a component of IGF-1/PI3K/Akt pathway, the main regulator of muscle mass, have been determined. METHODS: We performed muscle biopsy in 15 women with OP and in 15 women with OA (age range, 60-85 years). Muscle fibers were counted, measured, and classified by ATPase reaction. By statistical analysis, fiber-type atrophy was correlated with bone mineral density (BMD) in the OP group and with Harris Hip Score (HHS) and disease duration in the OA group. Akt protein levels were evaluated by Western blot analysis. RESULTS: Our findings revealed in OP a preferential type II fiber atrophy that inversely correlated with patients' BMD. In OA, muscle atrophy was of lower extent, homogeneous among fiber types and related to disease duration and HHS. Moreover, in OP muscle, the Akt level was significantly reduced as compared to OA muscles. CONCLUSIONS: This study shows that in OP, there is a preferential and diffuse type II fiber atrophy, proportional to the degree of bone loss, whereas in OA, muscle atrophy is connected to the functional impairment caused by the disease. A reduction of Akt seems to be one of the mechanisms involved in OP-related muscle atrophy

    Prostate Health Index (Phi) and Prostate Cancer Antigen 3 (PCA3) Significantly Improve Prostate Cancer Detection at Initial Biopsy in a Total PSA Range of 2-10 ng/ml

    Get PDF
    Many efforts to reduce prostate specific antigen (PSA) overdiagnosis and overtreatment have been made. To this aim, Prostate Health Index (Phi) and Prostate Cancer Antigen 3 (PCA3) have been proposed as new more specific biomarkers. We evaluated the ability of phi and PCA3 to identify prostate cancer (PCa) at initial prostate biopsy in men with total PSA range of 2-10 ng/ml. The performance of phi and PCA3 were evaluated in 300 patients undergoing first prostate biopsy. ROC curve analyses tested the accuracy (AUC) of phi and PCA3 in predicting PCa. Decision curve analyses (DCA) were used to compare the clinical benefit of the two biomarkers. We found that the AUC value of phi (0.77) was comparable to those of %p2PSA (0.76) and PCA3 (0.73) with no significant differences in pairwise comparison (%p2PSA vs phi p = 0.673, %p2PSA vs. PCA3 p = 0.417 and phi vs. PCA3 p = 0.247). These three biomarkers significantly outperformed fPSA (AUC = 0.60), %fPSA (AUC = 0.62) and p2PSA (AUC = 0.63). At DCA, phi and PCA3 exhibited a very close net benefit profile until the threshold probability of 25%, then phi index showed higher net benefit than PCA3. Multivariable analysis showed that the addition of phi and PCA3 to the base multivariable model (age, PSA, %fPSA, DRE, prostate volume) increased predictive accuracy, whereas no model improved single biomarker performance. Finally we showed that subjects with active surveillance (AS) compatible cancer had significantly lower phi and PCA3 values (p < 0.001 and p = 0.01, respectively). In conclusion, both phi and PCA3 comparably increase the accuracy in predicting the presence of PCa in total PSA range 2-10 ng/ml at initial biopsy, outperforming currently used %fPSA

    A conducting polymer with enhanced electronic stability applied in cardiac models

    No full text
    Electrically active constructs can have a beneficial effect on electroresponsive tissues, such as the brain, heart, and nervous system. Conducting polymers (CPs) are being considered as components of these constructs because of their intrinsic electroactive and flexible nature. However, their clinical application has been largely hampered by their short operational time due to a decrease in their electronic properties. We show that, by immobilizing the dopant in the conductive scaffold, we can prevent its electric deterioration. We grew polyaniline (PANI) doped with phytic acid on the surface of a chitosan film. The strong chelation between phytic acid and chitosan led to a conductive patch with retained electroactivity, low surface resistivity (35.85 ± 9.40 kilohms per square), and oxidized form after 2 weeks of incubation in physiological medium. Ex vivo experiments revealed that the conductive nature of the patch has an immediate effect on the electrophysiology of the heart. Preliminary in vivo experiments showed that the conductive patch does not induce proarrhythmogenic activities in the heart. Our findings set the foundation for the design of electronically stable CP-based scaffolds. This provides a robust conductive system that could be used at the interface with electroresponsive tissue to better understand the interaction and effect of these materials on the electrophysiology of these tissues

    Preoperative insulin-like growth factor-binding protein-3 (IGFBP-3) blood level predicts gleason sum upgrading

    Get PDF
    In this study, we evaluated the ability of preoperative IGFBP-2, IGFBP-3, IL-6, and SIL-6R serum levels to predict Gleason score upgrade in 52 PCa patients

    Predicting prostate biopsy outcome: Prostate health index (phi) and prostate cancer antigen 3 (PCA3) are useful biomarkers

    Get PDF
    Indication for prostate biopsy is presently mainly based on prostate-specific antigen (PSA) serum levels and digital-rectal examination (DRE). In view of the unsatisfactory accuracy of these two diagnostic exams, research has focused on novel markers to improve pre-biopsy prostate cancer detection, such as phi and PCA3. The purpose of this prospective study was to assess the diagnostic accuracy of phi and PCA3 for prostate cancer using biopsy as gold standard. Phi index (Beckman coulter immunoassay), PCA3 score (Progensa PCA3 assay) and other established biomarkers (tPSA, fPSA and %fPSA) were assessed before a 18-core prostate biopsy in a group of 251 subjects at their first biopsy. Values of %p2PSA and phi were significantly higher in patients with PCa compared with PCa-negative group (p<0.001) and also compared with high grade prostatic intraepithelial neoplasia (HGPIN) (p<0.001). PCA3 score values were significantly higher in PCa compared with PCa-negative subjects ( p<0.001) and in HGPIN vs PCa-negative patients (p<0.001). ROC curve analysis showed that %p2PSA, phi and PCA3 are predictive of malignancy. In conclusion, %p2PSA, phi and PCA3 may predict a diagnosis of PCa in men undergoing their first prostate biopsy. PCA3 score is more useful in discriminating between HGPIN and non-cancer. (C) 2012 Elsevier B.V. All rights reserved

    HOX D13 expression across 79 tumor tissue types.

    No full text
    HOX genes control normal development, primary cellular processes and are characterized by a unique genomic network organization. Locus D HOX genes play an important role in limb generation and mesenchymal condensation. Dysregulated HOXD13 expression has been detected in breast cancer, melanoma, cervical cancer and astrocytomas. We have investigated the epidemiology of HOXD13 expression in human tissues and its potential deregulation in the carcinogenesis of specific tumors. HOXD13 homeoprotein expression has been detected using microarray technology comprising more than 4,000 normal and neoplastic tissue samples including 79 different tumor categories. Validation of HOXD13 expression has been performed, at mRNA level, for selected tumor types. Significant differences are detectable between specific normal tissues and corresponding tumor types with the majority of cancers showing an increase in HOXD13 expression (16.1% normal vs. 57.7% cancers). In contrast, pancreas and stomach tumor subtypes display the opposite trend. Interestingly, detection of the HOXD13 homeoprotein in pancreas-tissue microarrays shows that its negative expression has a significant and adverse effect on the prognosis of patients with pancreatic cancer independent of the T or N stage at the time of diagnosis. Our study provides, for the first time, an overview of a HOX protein expression in a large series of normal and neoplastic tissue types, identifies pancreatic cancer as one of the most affected by the HOXD13 hoemoprotein and underlines the way homeoproteins can be associated to human cancerogenesis

    Adenoviral gene transfer of PLD1-D4 enhances insulin sensitivity in mice by disrupting phospholipase D1 interaction with PED/PEA-15.

    Get PDF
    Over-expression of phosphoprotein enriched in diabetes/phosphoprotein enriched in astrocytes (PED/PEA-15) causes insulin resistance by interacting with the D4 domain of phospholipase D1 (PLD1). Indeed, the disruption of this association restores insulin sensitivity in cultured cells over-expressing PED/PEA-15. Whether the displacement of PLD1 from PED/PEA-15 improves insulin sensitivity in vivo has not been explored yet. In this work we show that treatment with a recombinant adenoviral vector containing the human D4 cDNA (Ad-D4) restores normal glucose homeostasis in transgenic mice overexpressing PED/PEA-15 (Tg ped/pea-15) by improving both insulin sensitivity and secretion. In skeletal muscle of these mice, D4 over-expression inhibited PED/PEA-15-PLD1 interaction, decreased Protein Kinase C alpha activation and restored insulin induced Protein Kinase C zeta activation, leading to amelioration of insulin-dependent glucose uptake. Interestingly, Ad-D4 administration improved insulin sensitivity also in high-fat diet treated obese C57Bl/6 mice. We conclude that PED/PEA-15-PLD1 interaction may represent a novel target for interventions aiming at improving glucose tolerance

    Genome-wide study of association and interaction with maternal cytomegalovirus infection suggests new schizophrenia loci.

    Get PDF
    Genetic and environmental components as well as their interaction contribute to the risk of schizophrenia, making it highly relevant to include environmental factors in genetic studies of schizophrenia. This study comprises genome-wide association (GWA) and follow-up analyses of all individuals born in Denmark since 1981 and diagnosed with schizophrenia as well as controls from the same birth cohort. Furthermore, we present the first genome-wide interaction survey of single nucleotide polymorphisms (SNPs) and maternal cytomegalovirus (CMV) infection. The GWA analysis included 888 cases and 882 controls, and the follow-up investigation of the top GWA results was performed in independent Danish (1396 cases and 1803 controls) and German-Dutch (1169 cases, 3714 controls) samples. The SNPs most strongly associated in the single-marker analysis of the combined Danish samples were rs4757144 in ARNTL (P=3.78 × 10(-6)) and rs8057927 in CDH13 (P=1.39 × 10(-5)). Both genes have previously been linked to schizophrenia or other psychiatric disorders. The strongest associated SNP in the combined analysis, including Danish and German-Dutch samples, was rs12922317 in RUNDC2A (P=9.04 × 10(-7)). A region-based analysis summarizing independent signals in segments of 100 kb identified a new region-based genome-wide significant locus overlapping the gene ZEB1 (P=7.0 × 10(-7)). This signal was replicated in the follow-up analysis (P=2.3 × 10(-2)). Significant interaction with maternal CMV infection was found for rs7902091 (P(SNP × CMV)=7.3 × 10(-7)) in CTNNA3, a gene not previously implicated in schizophrenia, stressing the importance of including environmental factors in genetic studies

    Auxetic cardiac patches with tunable mechanical and conductive properties toward treating myocardial infarction

    Get PDF
    An auxetic conductive cardiac patch (AuxCP) for the treatment of myocardial infarction (MI) is introduced. The auxetic design gives the patch a negative Poisson's ratio, providing it with the ability to conform to the demanding mechanics of the heart. The conductivity allows the patch to interface with electroresponsive tissues such as the heart. Excimer laser microablation is used to micropattern a re-entrant honeycomb (bow-tie) design into a chitosan-polyaniline composite. It is shown that the bow-tie design can produce patches with a wide range in mechanical strength and anisotropy, which can be tuned to match native heart tissue. Further, the auxetic patches are conductive and cytocompatible with murine neonatal cardiomyocytes in vitro. Ex vivo studies demonstrate that the auxetic patches have no detrimental effect on the electrophysiology of both healthy and MI rat hearts and conform better to native heart movements than unpatterned patches of the same material. Finally, the AuxCP applied in a rat MI model results in no detrimental effect on cardiac function and negligible fibrotic response after two weeks in vivo. This approach represents a versatile and robust platform for cardiac biomaterial design and could therefore lead to a promising treatment for MI

    Cytosolic phosphorylated EGFR is predictive of recurrence in early stage penile cancer patients: A retropective study

    Get PDF
    Background: Penile cancer (PC) is a rare tumor, and therapeutic options are limited for this disease, with an overall 5-year overall survival around 65-70%. Adjuvant therapy is not recommended for patients with N0-1 disease, despite up to 60% of these patients will die within 5 years from diagnosis. Methods: Medical records of all patients who underwent radical surgery at University Federico II of Naples and at National Tumor Institute "Pascale" of Naples for early squamous cell carcinoma of the penis from January, 2000 to December, 2011 were retrieved. Paraffin wax embedded tissue specimens were retrieved from the pathology archives of the participating Institutions for all patients. Expression of p-EGFR, EGFR and positivity to HPV were evaluated along with other histological variables of interest. Demographic data of eligible patients were retrieved along with clinical characteristics such as type of surgical operation, time of follow up, time of recurrence, overall survival. A multivariable model was constructed using a forward stepwise selection procedure. Results: Thirty eligible patients were identified. All patients were positive for EGFR by immunohistochemistry, while 13 and 16 were respectively positive for nuclear and cytosolic p-EGFR. No EGFR amplification was detected by FISH. Eight patients were positive for high-risk HPV by ISH. On univariable analysis, corpora cavernosa infiltration (OR 7.8; 95% CI = 0,8 to 75,6; P = 0,039) and positivity for cytosolic p-EGFR (OR 7.6; 95% CI = 1.49 to 50; P = 0.009) were predictive for recurrence, while only positivity for cytosolic p-EGFR (HR = 9.0; 95% CI 1.0-100; P = 0,0116) was prognostic for poor survival. Conclusion: It is of primary importance to identify patients with N0-1 disease who are at increased risk of recurrence, as they do not normally receive any adjuvant therapy. Expression of p-EGFR was found in this series to be strongly related to increase risk of recurrence and shorter overall survival. This finding is consistent with the role of p-EGFR in other solid malignancies. Integration of p-EGFR with classic prognostic factors and other histology markers should be pursued to establish optimal adjuvant therapy for N0-1 PC patients
    corecore