38,607 research outputs found
Coordination of multiple robot arms
Kinematic resolved-rate control from one robot arm is extended to the coordinated control of multiple robot arms in the movement of an object. The structure supports the general movement of one axis system (moving reference frame) with respect to another axis system (control reference frame) by one or more robot arms. The grippers of the robot arms do not have to be parallel or at any pre-disposed positions on the object. For multiarm control, the operator chooses the same moving and control reference frames for each of the robot arms. Consequently, each arm then moves as though it were carrying out the commanded motions by itself
Balloon borne humidity and aerosol sensors
Infrared detectors for balloon sensing of aerosols and atmospheric moistur
A user-oriented and computerized model for estimating vehicle ride quality
A simplified empirical model and computer program for estimating passenger ride comfort within air and surface transportation systems are described. The model is based on subjective ratings from more than 3000 persons who were exposed to controlled combinations of noise and vibration in the passenger ride quality apparatus. This model has the capability of transforming individual elements of a vehicle's noise and vibration environment into subjective discomfort units and then combining the subjective units to produce a single discomfort index typifying passenger acceptance of the environment. The computational procedures required to obtain discomfort estimates are discussed, and a user oriented ride comfort computer program is described. Examples illustrating application of the simplified model to helicopter and automobile ride environments are presented
A two-stage stochastic programming with recourse model for determining robust planting plans in horticulture
A two-stage stochastic programming with recourse model for the problem of determining optimal planting plans for a vegetable crop is presented in this paper. Uncertainty caused by factors such as weather on yields is a major influence on many systems arising in horticulture. Traditional linear programming models are generally unsatisfactory in dealing with the uncertainty and produce solutions that are considered to involve an unacceptable level of risk. The first stage of the model relates to finding a planting plan which is common to all scenarios and the second stage is concerned with deriving a harvesting schedule for each scenario. Solutions are obtained for a range of risk aversion factors that not only result in greater expected profit compared to the corresponding deterministic model, but also are more robust
New broad 8Be nuclear resonances
Energies, total and partial widths, and reduced width amplitudes of 8Be
resonances up to an excitation energy of 26 MeV are extracted from a coupled
channel analysis of experimental data. The presence of an extremely broad J^pi
= 2^+ ``intruder'' resonance is confirmed, while a new 1^+ and very broad 4^+
resonance are discovered. A previously known 22 MeV 2^+ resonance is likely
resolved into two resonances. The experimental J^pi T = 3^(+)? resonance at 22
MeV is determined to be 3^-0, and the experimental 1^-? (at 19 MeV) and 4^-?
resonances to be isospin 0.Comment: 16 pages, LaTe
Sm-Nd isotopic systematics of the ancient Gneiss complex, southern Africa
In order to shed some new light on the question of the absolute and relative ages of the Ancient Gneiss Complex and Onverwacht Group, a Sm-Nd whole-rock and mineral isochron study of the AGC was begun. At this point, the whole-rock study of samples from the Bimodal Suite selected from those studied for their geochemical characteristics by Hunter et al., is completed. These results and their implications for the chronologic evolution of the Kaapvaal craton and the sources of these ancient rocks are discussed
Probing the superconducting ground state of the rare-earth ternary boride superconductors RuB ( = Lu,Y) using muon-spin rotation and relaxation
The superconductivity in the rare-earth transition metal ternary borides
RuB (where = Lu and Y) has been investigated using muon-spin
rotation and relaxation. Measurements made in zero-field suggest that
time-reversal symmetry is preserved upon entering the superconducting state in
both materials; a small difference in depolarization is observed above and
below the superconducting transition in both compounds, however this has been
attributed to quasistatic magnetic fluctuations. Transverse-field measurements
of the flux-line lattice indicate that the superconductivity in both materials
is fully gapped, with a conventional s-wave pairing symmetry and BCS-like
magnitudes for the zero-temperature gap energies. The electronic properties of
the charge carriers in the superconducting state have been calculated, with
effective masses and in the Lu
and Y compounds, respectively, with superconducting carrier densities
() m and ()
m. The materials have been classified according to the
Uemura scheme for superconductivity, with values for
of and , implying that
the superconductivity may not be entirely conventional in nature.Comment: 8 pages, 8 figure
- …
