19,961 research outputs found

    Detecting photon-photon scattering in vacuum at exawatt lasers

    Full text link
    In a recent paper, we have shown that the QED nonlinear corrections imply a phase correction to the linear evolution of crossing electromagnetic waves in vacuum. Here, we provide a more complete analysis, including a full numerical solution of the QED nonlinear wave equations for short-distance propagation in a symmetric configuration. The excellent agreement of such a solution with the result that we obtain using our perturbatively-motivated Variational Approach is then used to justify an analytical approximation that can be applied in a more general case. This allows us to find the most promising configuration for the search of photon-photon scattering in optics experiments. In particular, we show that our previous requirement of phase coherence between the two crossing beams can be released. We then propose a very simple experiment that can be performed at future exawatt laser facilities, such as ELI, by bombarding a low power laser beam with the exawatt bump.Comment: 8 pages, 6 figure

    Performance of the modified Becke-Johnson potential

    Full text link
    Very recently, in the 2011 version of the Wien2K code, the long standing shortcome of the codes based on Density Functional Theory, namely, its impossibility to account for the experimental band gap value of semiconductors, was overcome. The novelty is the introduction of a new exchange and correlation potential, the modified Becke-Johnson potential (mBJLDA). In this paper, we report our detailed analysis of this recent work. We calculated using this code, the band structure of forty one semiconductors and found an important improvement in the overall agreement with experiment as Tran and Blaha [{\em Phys. Rev. Lett.} 102, 226401 (2009)] did before for a more reduced set of semiconductors. We find, nevertheless, within this enhanced set, that the deviation from the experimental gap value can reach even much more than 20%, in some cases. Furthermore, since there is no exchange and correlation energy term from which the mBJLDA potential can be deduced, a direct optimization procedure to get the lattice parameter in a consistent way is not possible as in the usual theory. These authors suggest that a LDA or a GGA optimization procedure is used previous to a band structure calculation and the resulting lattice parameter introduced into the 2011 code. This choice is important since small percentage differences in the lattice parameter can give rise to quite higher percentage deviations from experiment in the predicted band gap value.Comment: 10 pages, 2 figures, 5 Table

    Profiles of inflated surfaces

    Get PDF
    We study the shape of inflated surfaces introduced in \cite{B1} and \cite{P1}. More precisely, we analyze profiles of surfaces obtained by inflating a convex polyhedron, or more generally an almost everywhere flat surface, with a symmetry plane. We show that such profiles are in a one-parameter family of curves which we describe explicitly as the solutions of a certain differential equation.Comment: 13 pages, 2 figure

    Noise spectroscopy of optical microcavity

    Full text link
    The intensity noise spectrum of the light passed through an optical microcavity is calculated with allowance for thermal fluctuations of its thickness. The spectrum thus obtained reveals a peak at the frequency of acoustic mode localized inside the microcavity and depends on the size of the illuminated area. The estimates of the noise magnitude show that it can be detected using the up-to-date noise spectroscopy technique.Comment: 10 pages, 1 figur

    Spin noise in quantum dot ensembles

    Full text link
    We study theoretically spin fluctuations of resident electrons or holes in singly charged quantum dots. The effects of external magnetic field and effective fields caused by the interaction of electron and nuclei spins are analyzed. The fluctuations of spin Faraday, Kerr and ellipticity signals revealing the spin noise of resident charge carriers are calculated for the continuous wave probing at the singlet trion resonance.Comment: 8 pages, 4 figure
    corecore