298 research outputs found
Odd-Order Aberration-Cancellation in Correlated-Photon Imaging
We discuss a correlated two-photon imaging apparatus that is capable of
producing images that are free of the effects of odd-order aberration
introduced by the optical system. We show that both quantum-entangled and
classically correlated light sources are capable of producing the desired
spatial-aberration cancelation
Parametric down-conversion from a wave-equations approach: geometry and absolute brightness
Using the approach of coupled wave equations, we consider spontaneous
parametric down-conversion (SPDC) in the narrow-band regime and its
relationship to classical nonlinear processes such as sum-frequency generation.
We find simple expressions in terms of mode overlap integrals for the absolute
pair production rate into single spatial modes, and simple relationships
between the efficiencies of the classical and quantum processes. The results,
obtained with Green function techniques, are not specific to any geometry or
nonlinear crystal. The theory is applied to both degenerate and non-degenerate
SPDC. We also find a time-domain expression for the correlation function
between filtered signal and idler fields.Comment: 10 pages, no figure
Efficient fiber coupling of down-conversion photon pairs
We develop and apply an effective analytic theory of a non-collinear,
broadband type-I parametric down-conversion to study a coupling efficiency of
the generated photon pairs into single mode optical fibers. We derive
conditions necessary for highly efficient coupling for single and double type-I
crystal producing polarization entangled states of light. We compare the
obtained approximate analytic expressions with the exact numerical solutions
and discuss the results for a case of BBO crystals.Comment: 15 pages, 4 figure
Conditioned Unitary Transformation on biphotons
A conditioned unitary transformation ( polarization rotation) is
performed at single-photon level. The transformation is realized by rotating
polarization for one of the photons of a polarization-entangled biphoton state
(signal photon) by means of a Pockel's cell triggered by the detection of the
other (idler) photon after polarization selection. As a result, polarization
degree for the signal beam changes from zero to the value given by the idler
detector quantum efficiency. This result is relevant to practical realization
of various quantum information schemes and can be used for developing a new
method of absolute quantum efficiency calibration
Quantum imaging of spin states in optical lattices
We investigate imaging of the spatial spin distribution of atoms in optical
lattices using non-resonant light scattering. We demonstrate how scattering
spatially correlated light from the atoms can result in spin state images with
enhanced spatial resolution. Furthermore, we show how using spatially
correlated light can lead to direct measurement of the spatial correlations of
the atomic spin distribution
Two-Photon Spiral Imaging with Correlated Orbital Angular Momentum States
The concept of correlated two-photon spiral imaging is introduced. We begin
by analyzing the joint orbital angular momentum (OAM) spectrum of correlated
photon pairs. The mutual information carried by the photon pairs is evaluated,
and it is shown that when an object is placed in one of the beam paths the
value of the mutual information is strongly dependent on object shape and is
closely related to the degree of rotational symmetry present. After analyzing
the effect of the object on the OAM correlations, the method of correlated
spiral imaging is described. We first present a version using parametric
downconversion, in which entangled pairs of photons with opposite OAM values
are produced, placing an object in the path of one beam. We then present a
classical (correlated, but non-entangled) version. The relative problems and
benefits of the classical versus entangled configurations are discussed. The
prospect is raised of carrying out compressive imaging via twophoton OAM
detection to reconstruct sparse objects with few measurements
Phase-conjugate optical coherence tomography
Quantum optical coherence tomography (Q-OCT) offers a factor-of-two
improvement in axial resolution and the advantage of even-order dispersion
cancellation when it is compared to conventional OCT (C-OCT). These features
have been ascribed to the non-classical nature of the biphoton state employed
in the former, as opposed to the classical state used in the latter.
Phase-conjugate OCT (PC-OCT), introduced here, shows that non-classical light
is not necessary to reap Q-OCT's advantages. PC-OCT uses classical-state signal
and reference beams, which have a phase-sensitive cross-correlation, together
with phase conjugation to achieve the axial resolution and even-order
dispersion cancellation of Q-OCT with a signal-to-noise ratio that can be
comparable to that of C-OCT.Comment: 4 pages, 3 figure
Ghost imaging using homodyne detection
We present a theoretical study of ghost imaging based on correlated beams
arising from parametric down-conversion, and which uses balanced homodyne
detection to measure both the signal and idler fields. We analytically show
that the signal-idler correlations contain the full amplitude and phase
information about an object located in the signal path, both in the near-field
and the far-field case. To this end we discuss how to optimize the optical
setups in the two imaging paths, including the crucial point regarding how to
engineer the phase of the idler local oscillator as to observe the desired
orthogonal quadrature components of the image. We point out an inherent link
between the far-field bandwidth and the near-field resolution of the reproduced
image, determined by the bandwidth of the source of the correlated beams.
However, we show how to circumvent this limitation by using a spatial averaging
technique which dramatically improves the imaging bandwidth of the far-field
correlations as well as speeds up the convergence rate. The results are backed
up by numerical simulations taking into account the finite size and duration of
the pump pulse.Comment: 17 pages, 10 figures, submitted to Phys. Rev.
Correlations in orbital angular momentum of spatially entangled paired photons generated in parametric downconversion
What are the orbital angular momentum correlations between spatially
entangled photon pairs generated in spontaneous parametric down-conversion? We
show that the answer to this question can be given in two alternative, although
complementary, ways. The answer posed in this letter explains satisfactorily
the seemingly contradictory results obtained in different experiments, and
theoretical approaches.Comment: 4 pages, 3 figures. Submitted to PR
Entangled-Photon Imaging of a Pure Phase Object
We demonstrate experimentally and theoretically that a coherent image of a
pure phase object may be obtained by use of a spatially incoherent illumination
beam. This is accomplished by employing a two-beam source of entangled photons
generated by spontaneous parametric down-conversion. Though each of the beams
is, in and of itself, spatially incoherent, the pair of beams exhibits
higher-order inter-beam coherence. One of the beams probes the phase object
while the other is scanned. The image is recorded by measuring the photon
coincidence rate using a photon-counting detector in each beam. Using a
reflection configuration, we successfully imaged a phase object implemented by
a MEMS micro-mirror array. The experimental results are in accord with
theoretical predictions.Comment: 11 pages, 3 figures, submittedto Phys. Rev. Let
- …