14,976 research outputs found
Strain-induced insulator state in La_0.7Sr_0.3CoO_3
We report on the observation of a strain-induced insulator state in
ferromagnetic La_0.7Sr_0.3CoO_3 films. Tensile strain above 1% is found to
enhance the resistivity by several orders of magnitude. Reversible strain of
0.15% applied using a piezoelectric substrate triggers huge resistance
modulations, including a change by a factor of 10 in the paramagnetic regime at
300 K. However, below the ferromagnetic ordering temperature, the magnetization
data indicate weak dependence on strain for the spin state of the Co ions. We
interpret the changes observed in the transport properties in terms of a
strain-induced splitting of the Co e_g levels and reduced double exchange,
combined with a percolation-type conduction in an electronic cluster state
Reversible strain effect on the magnetization of LaCoO3 films
The magnetization of ferromagnetic LaCoO3 films grown epitaxially on
piezoelectric substrates has been found to systematically decrease with the
reduction of tensile strain. The magnetization change induced by the reversible
strain variation reveals an increase of the Co magnetic moment with tensile
strain. The biaxial strain dependence of the Curie temperature is estimated to
be below 4K/% in the as-grown tensile strain state of our films. This is in
agreement with results from statically strained films on various substrates
Pitot pressure in hypersonic flow with condensation.
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76722/1/AIAA-6518-763.pd
High-fidelity readout of trapped-ion qubits
We demonstrate single-shot qubit readout with fidelity sufficient for
fault-tolerant quantum computation, for two types of qubit stored in single
trapped calcium ions. For an optical qubit stored in the (4S_1/2, 3D_5/2)
levels of 40Ca+ we achieve 99.991(1)% average readout fidelity in one million
trials, using time-resolved photon counting. An adaptive measurement technique
allows 99.99% fidelity to be reached in 145us average detection time. For a
hyperfine qubit stored in the long-lived 4S_1/2 (F=3, F=4) sub-levels of 43Ca+
we propose and implement a simple and robust optical pumping scheme to transfer
the hyperfine qubit to the optical qubit, capable of a theoretical fidelity
99.95% in 10us. Experimentally we achieve 99.77(3)% net readout fidelity,
inferring at least 99.87(4)% fidelity for the transfer operation.Comment: 4 pages, 3 figures; improved readout fidelity (numerical results
changed
Temperature behavior of the magnon modes of the square lattice antiferromagnet
A spin-wave theory of short-range order in the square lattice Heisenberg
antiferromagnet is formulated. With growing temperature from T=0 a gapless mode
is shown to arise simultaneously with opening a gap in the conventional
spin-wave mode. The spectral intensity is redistributed from the latter mode to
the former. For low temperatures the theory reproduces results of the modified
spin-wave theory by M.Takahashi, J.E.Hirsch et al. and without fitting
parameters gives values of observables in good agreement with Monte Carlo
results in the temperature range 0 <= T < 0.8J where J is the exchange
constant.Comment: 12 pages, 2 figure
Recommended from our members
Mutual fund performance and management location
In this article we develop and explore the most comprehensive database of fund manager performance delineated by location. We use this database and four performance evaluation techniques to determine whether a fund manager's location relative to the location of the securities they manage are listed and traded has any impact on fund performance. The main results of our article are very positive for the US fund management industry. Any investor wishing to invest in a US equity mutual fund would be well advised to have this portfolio managed by a manager based in the United States. Compared with European managers of US equity mutual funds, US managers produce higher mean alpha and display a far greater tendency for positive performance persistence
Detectability of Excitatory versus Inhibitory Drive in an Integrate-and-Fire-or-Burst Thalamocortical Relay Neuron Model
Although inhibitory inputs are often viewed as equal but opposite to excitatory inputs, excitatory inputs may alter the firing of postsynaptic cells more effectively than inhibitory inputs. This is because spike cancellation produced by an inhibitory input requires coincidence in time, whereas an excitatory input can add spikes with less temporal constraint. To test for such potential differences, especially in the context of the function of thalamocortical (TC) relay nuclei, we used a stochastic “integrate-and-fire-or-burst” TC neuron model to quantify the detectability of excitatory and inhibitory drive in the presence and absence of the low-threshold Ca 2+ current, IT, and the hyperpolarization-activated cation conductance, Isag. We find that excitatory inputs are generally superior drivers compared with inhibitory inputs in part because spontaneous activity of a postsynaptic neuron is not required in the case of excitatory drive. Interestingly, the presence of the low-threshold Ca 2+ current, IT in a postsynaptic neuron allows the robust detection of inhibitory drive over a certain range of spontaneous and driven activity, a range that can be extended by the presence of the hyperpolarization-activated cation conductance, Isag. These simulations suggest a possible reinterpretation of the role of inhibitory inputs, such as those to the thalamus
- …