33 research outputs found

    Interplay between geometry and flow distribution in an airway tree

    Full text link
    Uniform fluid flow distribution in a symmetric volume can be realized through a symmetric branched tree. It is shown here, however, that the flow partitioning can be highly sensitive to deviations from exact symmetry if inertial effects are present. This is found by direct numerical simulation of the Navier-Stokes equations in a 3D tree geometry. The flow asymmetry is quantified and found to depend on the Reynolds number. Moreover, for a given Reynolds number, we show that the flow distribution depends on the aspect ratio of the branching elements as well as their angular arrangement. Our results indicate that physiological variability should be severely restricted in order to ensure uniform fluid distribution in a tree. This study suggests that any non-uniformity in the air flow distribution in human lungs should be influenced by the respiratory conditions, rest or hard exercise

    Surfactant delivery in rat lungs: Comparing 3D geometrical simulation model with experimental instillation

    No full text
    Surfactant Replacement Therapy (SRT), which involves instillation of a liquid-surfactant mixture directly into the lung airway tree, is a major therapeutic treatment in neonatal patients with respiratory distress syndrome (RDS). This procedure has proved to be remarkably effective in premature newborns, inducing a five-fold decrease of mortality in the past 35 years. Disappointingly, its use in adults for treating acute respiratory distress syndrome (ARDS) experienced initial success followed by failures. Our recently developed numerical model has demonstrated that transition from success to failure of SRT in adults could, in fact, have a fluid mechanical origin that is potentially reversible. Here, we present the first numerical simulations of surfactant delivery into a realistic asymmetric conducting airway tree of the rat lung and compare them with experimental results. The roles of dose volume (VD), flow rate, and multiple aliquot delivery are investigated. We find that our simulations of surfactant delivery in rat lungs are in good agreement with our experimental data. In particular, we show that the monopodial architecture of the rat airway tree plays a major role in surfactant delivery, contributing to the poor homogeneity of the end distribution of surfactant. In addition, we observe that increasing VD increases the amount of surfactant delivered to the acini after losing a portion to coating the involved airways, the coating cost volume, VCC. Finally, we quantitatively assess the improvement resulting from a multiple aliquot delivery, a method sometimes employed clinically, and find that a much larger fraction of surfactant reaches the alveolar regions in this case. This is the first direct qualitative and quantitative comparison of our numerical model with experimental studies, which enhances our previous predictions in adults and neonates while providing a tool for predicting, engineering, and optimizing patient-specific surfactant delivery in complex situations.http://deepblue.lib.umich.edu/bitstream/2027.42/175166/2/Surfactant delivery in rat lungs Comparing 3D geometrical simulation model with experimental instillation.pdfPublished versionDescription of Surfactant delivery in rat lungs Comparing 3D geometrical simulation model with experimental instillation.pdf : Published versio

    Airway cell involvement in intermittent hypoxia-induced airway inflammation

    No full text
    International audienceRespiratory inflammation has been described in patients with obstructive sleep apnea syndrome, but it is unknown whether the increased neutrophil and interleukin (IL)-8 levels observed in induced sputum reflect systemic or local airway inflammation. We assessed the potential role of resident cells in intermittent hypoxia-induced airway inflammation
    corecore