8,749 research outputs found

    Secondary and compound concentrators for parabolic dish solar thermal power systems

    Get PDF
    A secondary optical element may be added to a parabolic dish solar concentrator to increase the geometric concentration ratio attainable at a given intercept factor. This secondary may be a Fresnel lens or a mirror, such as a compound elliptic concentrator or a hyperbolic trumpet. At a fixed intercept factor, higher overall geometric concentration may be obtainable with a long focal length primary and a suitable secondary matched to it. Use of a secondary to increase the geometric concentration ratio is more likely to e worthwhile if the receiver temperature is high and if errors in the primary are large. Folding the optical path with a secondary may reduce cost by locating the receiver and power conversion equipment closer to the ground and by eliminating the heavy structure needed to support this equipment at the primary focus. Promising folded-path configurations include the Ritchey-Chretien and perhaps some three element geometries. Folding the optical path may be most useful in systems that provide process heat

    The 100 and 160 micron maps of the dust reemission from the nucleus and inner-arm regions of NGC 6946

    Get PDF
    Dust reemission from the Scd galaxy NGC 6946 has been measured at 100 and 160 microns with the 32-channel University of Chicago Far-Infrared Camera. Researchers present fully sampled maps of the nucleus and inner spiral arms at 45 seconds resolution. The far-infrared morphology of the galaxy is a bright peak centered on a diffuse disk, where the peak occurs about 24 seconds NE of the Dressel and Condon optical center. The 100/160 micron color temperature is correlated with the H alpha surface brightness. Assuming the distance from Earth to the galaxy is 10.1 Mpc, researchers determine that Tc is 32 K at the nucleus and at radius 5.4 kpc, where there is a concentration of H II regions. In the intermediate annulus of relatively low H alpha surface brightness, the temperature drops to a local minimum of 25 K at radius 3 kpc. The ratio of reradiated to transmitted stellar luminosity is approx. 3.0 at the nucleus and approx. 0.9 for the disk. The optical depth at 100 micron increases from .0005 at the edges of our map to .0035 at the far infrared radiation (FIR) peak. Combining our observations with a fully sampled map of similar spatial extent in CO(1 greater than 0), researchers determine that the ratio F sub IR/I sub CO at the center of the galaxy is almost twice that for the disk, where the value is more or less constant

    Gene set bagging for estimating replicability of gene set analyses

    Get PDF
    Background: Significance analysis plays a major role in identifying and ranking genes, transcription factor binding sites, DNA methylation regions, and other high-throughput features for association with disease. We propose a new approach, called gene set bagging, for measuring the stability of ranking procedures using predefined gene sets. Gene set bagging involves resampling the original high-throughput data, performing gene-set analysis on the resampled data, and confirming that biological categories replicate. This procedure can be thought of as bootstrapping gene-set analysis and can be used to determine which are the most reproducible gene sets. Results: Here we apply this approach to two common genomics applications: gene expression and DNA methylation. Even with state-of-the-art statistical ranking procedures, significant categories in a gene set enrichment analysis may be unstable when subjected to resampling. Conclusions: We demonstrate that gene lists are not necessarily stable, and therefore additional steps like gene set bagging can improve biological inference of gene set analysis.Comment: 3 Figure

    Explicit Non-Abelian Monopoles and Instantons in SU(N) Pure Yang-Mills Theory

    Full text link
    It is well known that there are no static non-Abelian monopole solutions in pure Yang-Mills theory on Minkowski space R^{3,1}. We show that such solutions exist in SU(N) gauge theory on the spaces R^2\times S^2 and R^1\times S^1\times S^2 with Minkowski signature (-+++). In the temporal gauge they are solutions of pure Yang-Mills theory on T^1\times S^2, where T^1 is R^1 or S^1. Namely, imposing SO(3)-invariance and some reality conditions, we consistently reduce the Yang-Mills model on the above spaces to a non-Abelian analog of the \phi^4 kink model whose static solutions give SU(N) monopole (-antimonopole) configurations on the space R^{1,1}\times S^2 via the above-mentioned correspondence. These solutions can also be considered as instanton configurations of Yang-Mills theory in 2+1 dimensions. The kink model on R^1\times S^1 admits also periodic sphaleron-type solutions describing chains of n kink-antikink pairs spaced around the circle S^1 with arbitrary n>0. They correspond to chains of n static monopole-antimonopole pairs on the space R^1\times S^1\times S^2 which can also be interpreted as instanton configurations in 2+1 dimensional pure Yang-Mills theory at finite temperature (thermal time circle). We also describe similar solutions in Euclidean SU(N) gauge theory on S^1\times S^3 interpreted as chains of n instanton-antiinstanton pairs.Comment: 16 pages; v2: subsection on topological charges added, title expanded, some coefficients corrected, version to appear in PR
    • …
    corecore