243 research outputs found

    MREdictor: a two-step dynamic interaction model that accounts for mRNA accessibility and Pumilio binding accurately predicts microRNA targets.

    Get PDF
    The prediction of pairing between microRNAs (miRNAs) and the miRNA recognition elements (MREs) on mRNAs is expected to be an important tool for understanding gene regulation. Here, we show that mRNAs that contain Pumilio recognition elements (PRE) in the proximity of predicted miRNA-binding sites are more likely to form stable secondary structures within their 3′-UTR, and we demonstrated using a PUM1 and PUM2 double knockdown that Pumilio proteins are general regulators of miRNA accessibility. On the basis of these findings, we developed a computational method for predicting miRNA targets that accounts for the presence of PRE in the proximity of seed-match sequences within poorly accessible structures. Moreover, we implement the miRNA-MRE duplex pairing as a two-step model, which better fits the available structural data. This algorithm, called MREdictor, allows for the identification of miRNA targets in poorly accessible regions and is not restricted to a perfect seed-match; these features are not present in other computational prediction methods

    RNA framework: An all-in-one toolkit for the analysis of RNA structures and post-transcriptional modifications

    Get PDF
    RNA is emerging as a key regulator of a plethora of biological processes. While its study has remained elusive for decades, the recent advent of high-throughput sequencing technologies provided the unique opportunity to develop novel techniques for the study of RNA structure and post-transcriptional modifications. Nonetheless, most of the required downstream bioinformatics analyses steps are not easily reproducible, thus making the application of these techniques a prerogative of few laboratories. Here we introduce RNA Framework, an all-in-one toolkit for the analysis of most NGS-based RNA structure probing and post-transcriptional modification mapping experiments. To prove the extreme versatility of RNA Framework, we applied it to both an in-house generated DMS-MaPseq dataset, and to a series of literature available experiments. Notably, when starting from publicly available datasets, our software easily allows replicating authors' findings. Collectively, RNA Framework provides the most complete and versatile toolkit to date for a rapid and streamlined analysis of the RNA epistructurome. RNA Framework is available for download at: http://www.rnaframework.com

    Sequential cross-species chromosome painting among river buffalo, cattle, sheep and goat: a useful tool for chromosome abnormalities diagnosis within the family Bovidae.

    Get PDF
    The main goal of this study was to develop a comparative multi-colour Zoo-FISH on domestic ruminants metaphases using a combination of whole chromosome and sub-chromosomal painting probes obtained from the river buffalo species (Bubalus bubalis, 2n = 50,XY). A total of 13 DNA probes were obtained through chromosome microdissection and DOP-PCR amplification, labelled with two fluorochromes and sequentially hybridized on river buffalo, cattle (Bos taurus, 2n = 60,XY), sheep (Ovis aries, 2n = 54,XY) and goat (Capra hircus, 2n = 60,XY) metaphases. The same set of paintings were then hybridized on bovine secondary oocytes to test their potential use for aneuploidy detection during in vitro maturation. FISH showed excellent specificity on metaphases and interphase nuclei of all the investigated species. Eight pairs of chromosomes were simultaneously identified in buffalo, whereas the same set of probes covered 13 out 30 chromosome pairs in the bovine and goat karyotypes and 40% of the sheep karyotype (11 out of 27 chromosome pairs). This result allowed development of the first comparative M-FISH karyotype within the domestic ruminants. The molecular resolution of complex karyotypes by FISH is particularly useful for the small chromosomes, whose similarity in the banding patterns makes their identification very difficult. The M-FISH karyotype also represents a practical tool for structural and numerical chromosome abnormalities diagnosis. In this regard, the successful hybridization on bovine secondary oocytes confirmed the potential use of this set of probes for the simultaneous identification on the same germ cell of 12 chromosome aneuploidies. This is a fundamental result for monitoring the reproductive health of the domestic animals in relation to management errors and/or environmental hazards

    classical and molecular cytogenetic studies in some cattle breeds

    Get PDF
    Numerical autosome aberrations have a few importance in the animal breeding since the carriers show generally abnormal body conformation. For this reason, these abnormalities are systematically eliminated from the animal population by the breeders during the animal breeding. Numerical sex chromosome abnormalities are more tolerate by species, since genes are present in single copy (one of two X-chromosome is genetically inactive), and the carriers show usually normal body conformation. For this reason these abnormalities escape the normal breeding selection

    Comparative mapping of the fragile histidine triad (FHIT) gene in cattle, river buffalo, sheep and goat by FISH and assignment to BTA22 by RH-mapping: a comparison with HSA3

    No full text
    Common fragile sites can be damaged by exposure to a variety of carcinogens. The fragile histidine triad (FHIT) gene, including the most active human chromosomal fragile site (FRA3B) at chromosome band HSA3p14.2,1 has been proposed as a tumour suppressor gene for a variety of tumours.2 The most common response to carcinogen exposure is deletions at the FHIT locus that alter the gene structure and function. In this study we assign the FHIT gene in cattle, river buffalo, sheep and goat chromosomes by comparative fluorescence in situ hybridization (FISH)-mapping. In addition, the assignment to BTA22 was confirmed by typing the marker across a bovine radiation hybrid (RH) panel

    The transcriptional regulator ZNF398 mediates pluripotency and epithelial character downstream of TGF-beta in human PSCs

    Get PDF
    Human pluripotent stem cells (hPSCs) have the capacity to give rise to all differentiated cells of the adult. TGF-beta is used routinely for expansion of conventional hPSCs as flat epithelial colonies expressing the transcription factors POU5F1/OCT4, NANOG, SOX2. Here we report a global analysis of the transcriptional programme controlled by TGF-beta followed by an unbiased gain-of-function screening in multiple hPSC lines to identify factors mediating TGF-beta activity. We identify a quartet of transcriptional regulators promoting hPSC self-renewal including ZNF398, a human-specific mediator of pluripotency and epithelial character in hPSCs. Mechanistically, ZNF398 binds active promoters and enhancers together with SMAD3 and the histone acetyltransferase EP300, enabling transcription of TGF-beta targets. In the context of somatic cell reprogramming, inhibition of ZNF398 abolishes activation of pluripotency and epithelial genes and colony formation. Our findings have clear implications for the generation of bona fide hPSCs for regenerative medicine
    • …
    corecore