6,079 research outputs found

    Photodissociation and photoionisation of atoms and molecules of astrophysical interest

    Get PDF
    A new collection of photodissociation and photoionisation cross sections for 102 atoms and molecules of astrochemical interest has been assembled, along with a brief review of the basic processes involved. These have been used to calculate dissociation and ionisation rates, with uncertainties, in a standard ultraviolet interstellar radiation field (ISRF) and wavelength-dependent radiation fields. The new ISRF rates generally agree within 30% with our previous compilations, with a few notable exceptions. The reduction of rates in shielded regions was calculated as a function of dust, molecular and atomic hydrogen, atomic C, and self-shielding column densities. The relative importance of shielding types depends on the species in question and the dust optical properties. The new data are publicly available from the Leiden photodissociation and ionisation database. Sensitivity of rates to variation of temperature and isotope, and cross section uncertainties, are tested. Tests were conducted with an interstellar-cloud chemical model, and find general agreement (within a factor of two) with the previous iteration of the Leiden database for the ISRF, and order-of-magnitude variations assuming various kinds of stellar radiation. The newly parameterised dust-shielding factors makes a factor-of-two difference to many atomic and molecular abundances relative to parameters currently in the UDfA and KIDA astrochemical reaction databases. The newly-calculated cosmic-ray induced photodissociation and ionisation rates differ from current standard values up to a factor of 5. Under high temperature and cosmic-ray-flux conditions the new rates alter the equilibrium abundances of abundant dark cloud abundances by up to a factor of two. The partial cross sections for H2O and NH3 photodissociation forming OH, O, NH2 and NH are also evaluated and lead to radiation-field-dependent branching ratios.Comment: Corrected some inconsistent table/figure data. Significant change: Zn photoionisation rate corrected. Accepted for publication by A&

    Professional Affairs: Research Workers: Produce or Perish

    Get PDF
    To produce research results or perish is today a continual threat to the research worker who in the boom days of the past was only sometimes subjected to the threat of publish or perish. Research management must become more effective to ensure higher productivity and continued funding. We live in an age of change, and successful technological innovation is essential for survival. The selection, motivation, and continuing education of people can contribute much to successful R & D. The systems approach and the use of industrial economics and engineering concepts can contribute to optimum utilization of research workers and facilities

    Efficiency of radial transport of ices in protoplanetary disks probed with infrared observations: the case of CO2_2

    Full text link
    The efficiency of radial transport of icy solid material from outer disk to the inner disk is currently unconstrained. Efficient radial transport of icy dust grains could significantly alter the composition of the gas in the inner disk. Our aim is to model the gaseous CO2_2 abundance in the inner disk and use this to probe the efficiency of icy dust transport in a viscous disk. Features in the simulated CO2_2 spectra are investigated for their dust flux tracing potential. We have developed a 1D viscous disk model that includes gas and grain motions as well as dust growth, sublimation and freeze-out and a parametrisation of the CO2_2 chemistry. The thermo-chemical code DALI was used to model the mid-infrared spectrum of CO2_2, as can be observed with JWST-MIRI. CO2_2 ice sublimating at the iceline increases the gaseous CO2_2 abundance to levels equal to the CO2_2 ice abundance of 105\sim 10^{-5}, which is three orders of magnitude more than the gaseous CO2_2 abundances of 108\sim 10^{-8} observed by Spitzer. Grain growth and radial drift further increase the gaseous CO2_2 abundance. A CO2_2 destruction rate of at least 101110^{-11} s1^{-1} is needed to reconcile model prediction with observations. This rate is at least two orders of magnitude higher than the fastest known chemical destruction rate. A range of potential physical mechanisms to explain the low observed CO2_2 abundances are discussed. Transport processes in disks can have profound effects on the abundances of species in the inner disk. The discrepancy between our model and observations either suggests frequent shocks in the inner 10 AU that destroy CO2_2, or that the abundant midplane CO2_2 is hidden from our view by an optically thick column of low abundance CO2_2 in to the disk surface XDR/PDR. Other molecules, such as CH4_4 or NH3_3, can give further handles on the rate of mass transport.Comment: Accepted for publication in A&A, 18 pages, 13 figures, abstract abridge

    The dry and carbon poor inner disk of TW Hya: evidence for a massive icy dust trap

    Get PDF
    Gas giants accrete their envelopes from the gas and dust of proto-planetary disks, so it is important to determine the composition of the inner few AU, where most giant planets are expected to form. We aim to constrain the elemental carbon and oxygen abundance in the inner disk (R<R<2.3 AU) of TW Hya and compare with the outer disk (R>2.3R>2.3 AU) where carbon and oxygen appear underabundant by a factor of \sim50. Archival infrared observations of TW Hya are compared with a detailed thermo-chemical model, DALI. The inner disk gas mass and elemental C and O abundances are varied to fit the infrared CO, H2_2 and H2_2O line fluxes. Best fitting models have an inner disk that has a gas mass of 2×104M 2 \times 10^{-4} M_\odot with C/H 3×106\approx 3 \times 10^{-6} and O/H 6×106\approx 6 \times 10^{-6}. The elemental oxygen and carbon abundances of the inner disk are 50\sim 50 times underabundant compared to the ISM and are consistent with those found in the outer disk. The uniformly low volatile abundances imply that the inner disk is not enriched by ices on drifting bodies that evaporate. This indicates that drifting grains are stopped in a dust trap outside the water ice line. Such a dust trap would also form a cavity as seen in high resolution sub-millimeter continuum observations. If CO is the major carbon carrier in the ices, dust needs to be trapped efficiently outside the CO ice line of \sim20 AU. This would imply that the shallow sub-millimeter rings in the TW Hya disk outside of 20 AU correspond to very efficient dust traps. The more likely scenario is that more than 98\% of the CO has been converted into less volatile species, e.g. CO2_2 and CH3_3OH. A giant planet forming in the inner disk would be accreting gas with low carbon and oxygen abundances as well as very little icy dust, potentially leading to a planet atmosphere with strongly substellar C/H and O/H ratios.Comment: 6 pages, 3 figures, accepted to A&A letter

    Reionization history constraints from neural network based predictions of high-redshift quasar continua

    Full text link
    Observations of the early Universe suggest that reionization was complete by z6z\sim6, however, the exact history of this process is still unknown. One method for measuring the evolution of the neutral fraction throughout this epoch is via observing the Lyα\alpha damping wings of high-redshift quasars. In order to constrain the neutral fraction from quasar observations, one needs an accurate model of the quasar spectrum around Lyα\alpha, after the spectrum has been processed by its host galaxy but before it is altered by absorption and damping in the intervening IGM. In this paper, we present a novel machine learning approach, using artificial neural networks, to reconstruct quasar continua around Lyα\alpha. Our QSANNdRA algorithm improves the error in this reconstruction compared to the state-of-the-art PCA-based model in the literature by 14.2% on average, and provides an improvement of 6.1% on average when compared to an extension thereof. In comparison with the extended PCA model, QSANNdRA further achieves an improvement of 22.1% and 16.8% when evaluated on low-redshift quasars most similar to the two high-redshift quasars under consideration, ULAS J1120+0641 at z=7.0851z=7.0851 and ULAS J1342+0928 at z=7.5413z=7.5413, respectively. Using our more accurate reconstructions of these two z>7z>7 quasars, we estimate the neutral fraction of the IGM using a homogeneous reionization model and find xˉHI=0.250.05+0.05\bar{x}_\mathrm{HI} = 0.25^{+0.05}_{-0.05} at z=7.0851z=7.0851 and xˉHI=0.600.11+0.11\bar{x}_\mathrm{HI} = 0.60^{+0.11}_{-0.11} at z=7.5413z=7.5413. Our results are consistent with the literature and favour a rapid end to reionization

    Model-based evolutionary algorithms

    Get PDF
    corecore