2,174 research outputs found
Micro-CernVM: Slashing the Cost of Building and Deploying Virtual Machines
The traditional virtual machine building and and deployment process is
centered around the virtual machine hard disk image. The packages comprising
the VM operating system are carefully selected, hard disk images are built for
a variety of different hypervisors, and images have to be distributed and
decompressed in order to instantiate a virtual machine. Within the HEP
community, the CernVM File System has been established in order to decouple the
distribution from the experiment software from the building and distribution of
the VM hard disk images.
We show how to get rid of such pre-built hard disk images altogether. Due to
the high requirements on POSIX compliance imposed by HEP application software,
CernVM-FS can also be used to host and boot a Linux operating system. This
allows the use of a tiny bootable CD image that comprises only a Linux kernel
while the rest of the operating system is provided on demand by CernVM-FS. This
approach speeds up the initial instantiation time and reduces virtual machine
image sizes by an order of magnitude. Furthermore, security updates can be
distributed instantaneously through CernVM-FS. By leveraging the fact that
CernVM-FS is a versioning file system, a historic analysis environment can be
easily re-spawned by selecting the corresponding CernVM-FS file system
snapshot.Comment: Conference paper at the 2013 Computing in High Energy Physics (CHEP)
Conference, Amsterda
CernVM Online and Cloud Gateway: a uniform interface for CernVM contextualization and deployment
In a virtualized environment, contextualization is the process of configuring
a VM instance for the needs of various deployment use cases. Contextualization
in CernVM can be done by passing a handwritten context to the user data field
of cloud APIs, when running CernVM on the cloud, or by using CernVM web
interface when running the VM locally. CernVM Online is a publicly accessible
web interface that unifies these two procedures. A user is able to define,
store and share CernVM contexts using CernVM Online and then apply them either
in a cloud by using CernVM Cloud Gateway or on a local VM with the single-step
pairing mechanism. CernVM Cloud Gateway is a distributed system that provides a
single interface to use multiple and different clouds (by location or type,
private or public). Cloud gateway has been so far integrated with OpenNebula,
CloudStack and EC2 tools interfaces. A user, with access to a number of clouds,
can run CernVM cloud agents that will communicate with these clouds using their
interfaces, and then use one single interface to deploy and scale CernVM
clusters. CernVM clusters are defined in CernVM Online and consist of a set of
CernVM instances that are contextualized and can communicate with each other.Comment: Conference paper at the 2013 Computing in High Energy Physics (CHEP)
Conference, Amsterda
Performance of the Gas Gain Monitoring system of the CMS RPC muon detector and effective working point fine tuning
The Gas Gain Monitoring (GGM) system of the Resistive Plate Chamber (RPC)
muon detector in the Compact Muon Solenoid (CMS) experiment provides fast and
accurate determination of the stability in the working point conditions due to
gas mixture changes in the closed loop recirculation system. In 2011 the GGM
began to operate using a feedback algorithm to control the applied voltage, in
order to keep the GGM response insensitive to environmental temperature and
atmospheric pressure variations. Recent results are presented on the feedback
method used and on alternative algorithms
The Upgrade of the CMS RPC System during the First LHC Long Shutdown
The CMS muon system includes in both the barrel and endcap region Resistive
Plate Chambers (RPC). They mainly serve as trigger detectors and also improve
the reconstruction of muon parameters. Over the years, the instantaneous
luminosity of the Large Hadron Collider gradually increases. During the LHC
Phase 1 (~first 10 years of operation) an ultimate luminosity is expected above
its design value of 10^34/cm^2/s at 14 TeV. To prepare the machine and also the
experiments for this, two long shutdown periods are scheduled for 2013-2014 and
2018-2019. The CMS Collaboration is planning several detector upgrades during
these long shutdowns. In particular, the muon detection system should be able
to maintain a low-pT threshold for an efficient Level-1 Muon Trigger at high
particle rates. One of the measures to ensure this, is to extend the present
RPC system with the addition of a 4th layer in both endcap regions. During the
first long shutdown, these two new stations will be equipped in the region
|eta|<1.6 with 144 High Pressure Laminate (HPL) double-gap RPCs operating in
avalanche mode, with a similar design as the existing CMS endcap chambers.
Here, we present the upgrade plans for the CMS RPC system for the fist long
shutdown, including trigger simulation studies for the extended system, and
details on the new HPL production, the chamber assembly and the quality control
procedures.Comment: 9 pages, 6 figures, presented by M.Tytgat at the XI workshop on
Resistive Plate Chambers and Related Detectors (RPC2012), INFN - Laboratori
Nazionali di Frascati, February 5-10, 201
Recommended from our members
Inclusive J/Ï production at mid-rapidity in pp collisions at âs = 5.02 TeV
Inclusive J/Ï production is studied in minimum-bias proton-proton collisions at a centre-of-mass energy of s = 5.02 TeV by ALICE at the CERN LHC. The measurement is performed at mid-rapidity (|y| < 0.9) in the dielectron decay channel down to zero transverse momentum pT, using a data sample corresponding to an integrated luminosity of Lint = 19.4 ± 0.4 nbâ1. The measured pT-integrated inclusive J/Ï production cross sec- tion is dÏ/dy = 5.64 ± 0.22(stat.) ± 0.33(syst.) ± 0.12(lumi.) ÎŒb. The pT-differential cross section d2Ï/dpTdy is measured in the pT range 0â10 GeV/c and compared with state-of- the-art QCD calculations. The J/Ï ăpTă and ăpT2ă are extracted and compared with results obtained at other collision energies. [Figure not available: see fulltext.]
Recommended from our members
Measurement of Î (1520) production in pp collisions at âs=7TeV and pâPb collisions at âsNN=5.02TeV
The production of the Î (1520) baryonic resonance has been measured at midrapidity in inelastic pp collisions at s=7TeV and in pâPb collisions at sNN=5.02TeV for non-single diffractive events and in multiplicity classes. The resonance is reconstructed through its hadronic decay channel Î (1520) â pK - and the charge conjugate with the ALICE detector. The integrated yields and mean transverse momenta are calculated from the measured transverse momentum distributions in pp and pâPb collisions. The mean transverse momenta follow mass ordering as previously observed for other hyperons in the same collision systems. A Blast-Wave function constrained by other light hadrons (Ï, K, KS0, p, Î) describes the shape of the Î (1520) transverse momentum distribution up to 3.5GeV/c in pâPb collisions. In the framework of this model, this observation suggests that the Î (1520) resonance participates in the same collective radial flow as other light hadrons. The ratio of the yield of Î (1520) to the yield of the ground state particle Î remains constant as a function of charged-particle multiplicity, suggesting that there is no net effect of the hadronic phase in pâPb collisions on the Î (1520) yield
Recommended from our members
Measurement of Ï(1S) Elliptic Flow at Forward Rapidity in Pb-Pb Collisions at sqrt[s_{NN}]=5.02ââTeV.
The first measurement of the Ï(1S) elliptic flow coefficient (v_{2}) is performed at forward rapidity (2.
Recommended from our members
Measurement of charged jet cross section in pp collisions at s =5.02 TeV
The cross section of jets reconstructed from charged particles is measured in the transverse momentum range of
An overview of the design, construction and performance of large area triple-GEM prototypes for future upgrades of the CMS forward muon system
GEM detectors are used in high energy physics experiments given their good spatial resolution, high rate capability and radiation hardness. An international collaboration is investigating the possibility of covering the 1.6 < vertical bar eta vertical bar < 2.4 region of the CMS muon endcaps with large-area triple-GEM detectors. The CMS high-eta area is actually not fully instrumented, only Cathode Strip Chamber (CSC) are installed. The vacant area presents an opportunity for a detector technology able to to cope with the harsh radiation environment; these micropattern gas detectors are an appealing option to simultaneously enhance muon tracking and triggering capabilities in a future upgrade of the CMS detector. A general overview of this feasibility study is presented. Design and construction of small (10cm x 10cm) and full-size trapezoidal (1m x 0.5m) triple-GEM prototypes is described. Results from measurements with x-rays and from test beam campaigns at the CERN SPS is shown for the small and large prototypes. Preliminary simulation studies on the expected muon reconstruction and trigger performances of this proposed upgraded muon system are reported
- âŠ