196,204 research outputs found

    Direct torque control of brushless DC drives with reduced torque ripple

    Get PDF
    The application of direct torque control (DTC) to brushless ac drives has been investigated extensively. This paper describes its application to brushless dc drives, and highlights the essential differences in its implementation, as regards torque estimation and the representation of the inverter voltage space vectors. Simulated and experimental results are presented, and it is shown that, compared with conventional current control, DTC results in reduced torque ripple and a faster dynamic response

    Advances on creep–fatigue damage assessment in notched components

    Get PDF
    In this paper, the extended Direct Steady Cyclic Analysis method (eDSCA) within the Linear Matching Method Framework (LMMF) is combined with the Stress Modified Ductility Exhaustion method and the modified Cavity Growth Factor (CGF) for the first time. This new procedure is used to systematically investigate the effect of several load parameters including load level, load type and creep dwell duration on the creep–fatigue crack initiation process in a notched specimen. The results obtained are verified through a direct comparison with experimental results available in the literature demonstrating great accuracy in predicting the crack initiation life and the driving mechanisms. Furthermore, this extensive numerical study highlighted the possible detrimental effect of the creep–ratchetting mechanism on the crack growth process. This work has a significant impact on structural integrity assessments of complex industrial components and for the better understanding of creep–fatigue lab scale tests

    An efficient method for computing unsteady transonic aerodynamics of swept wings with control surfaces

    Get PDF
    A transonic equivalent strip (TES) method was further developed for unsteady flow computations of arbitrary wing planforms. The TES method consists of two consecutive correction steps to a given nonlinear code such as LTRAN2; namely, the chordwise mean flow correction and the spanwise phase correction. The computation procedure requires direct pressure input from other computed or measured data. Otherwise, it does not require airfoil shape or grid generation for given planforms. To validate the computed results, four swept wings of various aspect ratios, including those with control surfaces, are selected as computational examples. Overall trends in unsteady pressures are established with those obtained by XTRAN3S codes, Isogai's full potential code and measured data by NLR and RAE. In comparison with these methods, the TES has achieved considerable saving in computer time and reasonable accuracy which suggests immediate industrial applications

    Directional excitation of graphene surface plasmons

    Full text link
    We propose a scheme to directionally couple light into graphene plasmons by placing a graphene sheet on a magneto-optical substrate. When a magnetic field is applied parallel to the surface, the graphene plasmon dispersion relation becomes asymmetric in the forward and backward directions. It is possible to achieve unidirectional excitation of graphene plasmons with normally incident illumination by applying a grating to the substrate. The directionality can be actively controlled by electrically gating the graphene, or by varying the magnetic bias. This scheme may have applications in graphene-based opto-electronics and sensing

    Time Delay Compensation and Stability Analysis of Networked Predictive Control Systems Based on Hammerstein Model

    Get PDF
    A novel approach is proposed for a networked control system with random delays containing a nonlinear process based on a Hammerstein model. The method uses a time delay two step generalized predictive control (TDTSGPC), which consists of two parts, one is to deal with the input nonlinearity of the Hammerstein model and the other is to compensate the network induced delays in the networked control system. Theoretical results using the Popov theorem are presented for the closed-loop stability of the system in the case of a constant delay. Simulation examples illustrating the validity of the approach are presented

    Localization and adiabatic pumping in a generalized Aubry-Andr\'e-Harper model

    Full text link
    A generalization of the Aubry-Andr\'e-Harper (AAH) model is developed, containing a tunable phase shift between on-site and off-diagonal modulations. A localization transition can be induced by varying just this phase, keeping all other model parameters constant. The complete localization phase diagram is obtained. Unlike the original AAH model, the generalized model can exhibit a transition between topologically trivial bandstructures and topologically non-trivial bandstructures containing protected boundary states. These boundary states can be pumped across the system by adiabatic variations in the phase shift parameter. The model can also be used to demonstrate the phenomenon of adiabatic pumping breakdown due to localization
    • 

    corecore