19,155 research outputs found
Pressure effects on the heavy-fermion antiferromagnet CeAuSb2
The f-electron compound CeAuSb2, which crystallizes in the ZrCuSi2-type
tetragonal structure, orders antiferromagnetically between 5 and 6.8 K, where
the antiferromagnetic transition temperature T_N depends on the occupancy of
the Au site. Here we report the electrical resistivity and heat capacity of a
high-quality crystal CeAuSb2 with T_N of 6.8 K, the highest for this compound.
The magnetic transition temperature is initially suppressed with pressure, but
is intercepted by a new magnetic state above 2.1 GPa. The new phase shows a
dome shape with pressure and coexists with another phase at pressures higher
than 4.7 GPa. The electrical resistivity shows a T^2 Fermi liquids behavior in
the complex magnetic state, and the residual resistivity and the T^2
resistivity coefficient increases with pressure, suggesting the possibility of
a magnetic quantum critical point at a higher pressure.Comment: 5 pages, 5 firure
Do Athermal Amorphous Solids Exist?
We study the elastic theory of amorphous solids made of particles with finite
range interactions in the thermodynamic limit. For the elastic theory to exist
one requires all the elastic coefficients, linear and nonlinear, to attain a
finite thermodynamic limit. We show that for such systems the existence of
non-affine mechanical responses results in anomalous fluctuations of all the
nonlinear coefficients of the elastic theory. While the shear modulus exists,
the first nonlinear coefficient B_2 has anomalous fluctuations and the second
nonlinear coefficient B_3 and all the higher order coefficients (which are
non-zero by symmetry) diverge in the thermodynamic limit. These results put a
question mark on the existence of elasticity (or solidity) of amorphous solids
at finite strains, even at zero temperature. We discuss the physical meaning of
these results and propose that in these systems elasticity can never be
decoupled from plasticity: the nonlinear response must be very substantially
plastic.Comment: 11 pages, 11 figure
Hybridization gap and Fano resonance in SmB
We present results of Scanning Tunneling Microscopy and Spectroscopy (STS)
measurements on the "Kondo insulator" SmB. The vast majority of surface
areas investigated was reconstructed but, infrequently, also patches of varying
size of non-reconstructed, Sm- or B-terminated surfaces were found. On the
smallest patches, clear indications for the hybridization gap and
inter-multiplet transitions were observed. On non-reconstructed surface areas
large enough for coherent co-tunneling we were able to observe clear-cut Fano
resonances. Our locally resolved STS indicated considerable finite conductance
on all surfaces independent of their structure.Comment: 5 pages, 4 figure
Putative spin liquid in the triangle-based iridate BaIrTiO
We report on thermodynamic, magnetization, and muon spin relaxation
measurements of the strong spin-orbit coupled iridate BaIrTiO,
which constitutes a new frustration motif made up a mixture of edge- and
corner-sharing triangles. In spite of strong antiferromagnetic exchange
interaction of the order of 100~K, we find no hint for long-range magnetic
order down to 23 mK. The magnetic specific heat data unveil the -linear and
-squared dependences at low temperatures below 1~K. At the respective
temperatures, the zero-field muon spin relaxation features a persistent spin
dynamics, indicative of unconventional low-energy excitations. A comparison to
the isostructural compound BaRuTiO suggests that a concerted
interplay of compass-like magnetic interactions and frustrated geometry
promotes a dynamically fluctuating state in a triangle-based iridate.Comment: Physical Review B accepte
Effects of pressure on the ferromagnetic state of the CDW compound SmNiC2
We report the pressure response of charge-density-wave (CDW) and
ferromagnetic (FM) phases of the rare-earth intermetallic SmNiC2 up to 5.5 GPa.
The CDW transition temperature (T_{CDW}), which is reflected as a sharp
inflection in the electrical resistivity, is almost independent of pressure up
to 2.18 GPa but is strongly enhanced at higher pressures, increasing from 155.7
K at 2.2 GPa to 279.3 K at 5.5 GPa. Commensurate with the sharp increase in
T_{CDW}, the first-order FM phase transition, which decreases with applied
pressure, bifurcates into the upper (T_{M1}) and lower (T_c) phase transitions
and the lower transition changes its nature to second order above 2.18 GPa.
Enhancement both in the residual resistivity and the Fermi-liquid T^2
coefficient A near 3.8 GPa suggests abundant magnetic quantum fluctuations that
arise from the possible presence of a FM quantum critical point.Comment: 5 pages, 5 figure
- …