19,155 research outputs found

    Pressure effects on the heavy-fermion antiferromagnet CeAuSb2

    Full text link
    The f-electron compound CeAuSb2, which crystallizes in the ZrCuSi2-type tetragonal structure, orders antiferromagnetically between 5 and 6.8 K, where the antiferromagnetic transition temperature T_N depends on the occupancy of the Au site. Here we report the electrical resistivity and heat capacity of a high-quality crystal CeAuSb2 with T_N of 6.8 K, the highest for this compound. The magnetic transition temperature is initially suppressed with pressure, but is intercepted by a new magnetic state above 2.1 GPa. The new phase shows a dome shape with pressure and coexists with another phase at pressures higher than 4.7 GPa. The electrical resistivity shows a T^2 Fermi liquids behavior in the complex magnetic state, and the residual resistivity and the T^2 resistivity coefficient increases with pressure, suggesting the possibility of a magnetic quantum critical point at a higher pressure.Comment: 5 pages, 5 firure

    Do Athermal Amorphous Solids Exist?

    Full text link
    We study the elastic theory of amorphous solids made of particles with finite range interactions in the thermodynamic limit. For the elastic theory to exist one requires all the elastic coefficients, linear and nonlinear, to attain a finite thermodynamic limit. We show that for such systems the existence of non-affine mechanical responses results in anomalous fluctuations of all the nonlinear coefficients of the elastic theory. While the shear modulus exists, the first nonlinear coefficient B_2 has anomalous fluctuations and the second nonlinear coefficient B_3 and all the higher order coefficients (which are non-zero by symmetry) diverge in the thermodynamic limit. These results put a question mark on the existence of elasticity (or solidity) of amorphous solids at finite strains, even at zero temperature. We discuss the physical meaning of these results and propose that in these systems elasticity can never be decoupled from plasticity: the nonlinear response must be very substantially plastic.Comment: 11 pages, 11 figure

    Hybridization gap and Fano resonance in SmB6{_6}

    Full text link
    We present results of Scanning Tunneling Microscopy and Spectroscopy (STS) measurements on the "Kondo insulator" SmB6_6. The vast majority of surface areas investigated was reconstructed but, infrequently, also patches of varying size of non-reconstructed, Sm- or B-terminated surfaces were found. On the smallest patches, clear indications for the hybridization gap and inter-multiplet transitions were observed. On non-reconstructed surface areas large enough for coherent co-tunneling we were able to observe clear-cut Fano resonances. Our locally resolved STS indicated considerable finite conductance on all surfaces independent of their structure.Comment: 5 pages, 4 figure

    Putative spin liquid in the triangle-based iridate Ba3_3IrTi2_2O9_9

    Full text link
    We report on thermodynamic, magnetization, and muon spin relaxation measurements of the strong spin-orbit coupled iridate Ba3_3IrTi2_2O9_9, which constitutes a new frustration motif made up a mixture of edge- and corner-sharing triangles. In spite of strong antiferromagnetic exchange interaction of the order of 100~K, we find no hint for long-range magnetic order down to 23 mK. The magnetic specific heat data unveil the TT-linear and -squared dependences at low temperatures below 1~K. At the respective temperatures, the zero-field muon spin relaxation features a persistent spin dynamics, indicative of unconventional low-energy excitations. A comparison to the 4d4d isostructural compound Ba3_3RuTi2_2O9_9 suggests that a concerted interplay of compass-like magnetic interactions and frustrated geometry promotes a dynamically fluctuating state in a triangle-based iridate.Comment: Physical Review B accepte

    Effects of pressure on the ferromagnetic state of the CDW compound SmNiC2

    Full text link
    We report the pressure response of charge-density-wave (CDW) and ferromagnetic (FM) phases of the rare-earth intermetallic SmNiC2 up to 5.5 GPa. The CDW transition temperature (T_{CDW}), which is reflected as a sharp inflection in the electrical resistivity, is almost independent of pressure up to 2.18 GPa but is strongly enhanced at higher pressures, increasing from 155.7 K at 2.2 GPa to 279.3 K at 5.5 GPa. Commensurate with the sharp increase in T_{CDW}, the first-order FM phase transition, which decreases with applied pressure, bifurcates into the upper (T_{M1}) and lower (T_c) phase transitions and the lower transition changes its nature to second order above 2.18 GPa. Enhancement both in the residual resistivity and the Fermi-liquid T^2 coefficient A near 3.8 GPa suggests abundant magnetic quantum fluctuations that arise from the possible presence of a FM quantum critical point.Comment: 5 pages, 5 figure
    corecore