29,244 research outputs found
A characterization of positive linear maps and criteria of entanglement for quantum states
Let and be (finite or infinite dimensional) complex Hilbert spaces. A
characterization of positive completely bounded normal linear maps from
into is given, which particularly gives a
characterization of positive elementary operators including all positive linear
maps between matrix algebras. This characterization is then applied give a
representation of quantum channels (operations) between infinite-dimensional
systems. A necessary and sufficient criterion of separability is give which
shows that a state on is separable if and only if
for all positive finite rank elementary operators
. Examples of NCP and indecomposable positive linear maps are given and
are used to recognize some entangled states that cannot be recognized by the
PPT criterion and the realignment criterion.Comment: 20 page
The spectral energy distribution of galaxies at z > 2.5: Implications from the Herschel/SPIRE color-color diagram
We use the Herschel SPIRE color-color diagram to study the spectral energy
distribution (SED) and the redshift estimation of high-z galaxies. We compiled
a sample of 57 galaxies with spectroscopically confirmed redshifts and SPIRE
detections in all three bands at , and compared their average SPIRE
colors with SED templates from local and high-z libraries. We find that local
SEDs are inconsistent with high-z observations. The local calibrations of the
parameters need to be adjusted to describe the average colors of high-z
galaxies. For high-z libraries, the templates with an evolution from z=0 to 3
can well describe the average colors of the observations at high redshift.
Using these templates, we defined color cuts to divide the SPIRE color-color
diagram into different regions with different mean redshifts. We tested this
method and two other color cut methods using a large sample of 783
Herschel-selected galaxies, and find that although these methods can separate
the sample into populations with different mean redshifts, the dispersion of
redshifts in each population is considerably large. Additional information is
needed for better sampling.Comment: 17 pages, 14 figures, accepted for publication in A&
Fermi resonance-algebraic model for molecular vibrational spectra
A Fermi resonance-algebraic model is proposed for molecular vibrations, where
a U(2) algebra is used for describing the vibrations of each bond, and Fermi
resonances between stretching and bending modes are taken into account. The
model for a bent molecule XY_2 and a molecule XY_3 is successfully applied to
fit the recently observed vibrational spectrum of the water molecule and arsine
(AsH_3), respectively, and results are compared with those of other models.
Calculations show that algebraic approaches can be used as an effective method
for describing molecular vibrations with small standard deviations
Window on Higgs Boson: Fourth Generation Decays Revisited
Direct and indirect searches of the Higgs boson suggest that 113 GeV
170 GeV is likely. With the LEP era over and the
Tevatron Run II search via arduous, we revisit a case where
or jets could arise via strong pair
production. In contrast to 10 years ago, the tight electroweak constraint on
-- (hence --) splitting reduces FCNC
, rates, making naturally competitive.
Such a "cocktail solution" is precisely the mix that could evade the CDF search
for , and the may well be lurking below the top. In
light of the Higgs program, this two-in-one strategy should be pursued.Comment: 4 pages, RevTex, 4 eps figures, One more figure, version to be
published in Phys. Rev.
Tevatron Mass Limits for Heavy Quarks Decaying via Flavor Changing Neutral Current
The dimuon and dielectron data from the Tevatron collider are used
to probe for heavy quarks, which decay dominantly via flavour changing neutral
current. Depending on whether the decay occurs at the tree or loop
level, one gets a lower mass limit of 85 or 75 GeV. The former applies to
singlet, vector doublet and mirror type quarks while the latter applies to a
lefthanded quark doublet of the fourth generation.Comment: 13 pages, TIFR/TH/92-58, Two figures to be supplied on reques
Two-qubit Quantum Logic Gate in Molecular Magnets
We proposed a scheme to realize a controlled-NOT quantum logic gate in a
dimer of exchange coupled single-molecule magnets, . We
chosen the ground state and the three low-lying excited states of a dimer in a
finite longitudinal magnetic field as the quantum computing bases and
introduced a pulsed transverse magnetic field with a special frequency. The
pulsed transverse magnetic field induces the transitions between the quantum
computing bases so as to realize a controlled-NOT quantum logic gate. The
transition rates between the quantum computing bases and between the quantum
computing bases and other excited states are evaluated and analyzed.Comment: 7 pages, 2 figure
Is the Top Quark Really Heavier than the Boson?
Scalar induced top decays may drastically suppress
and still hide the top below . The collider experiments should
enlarge the scope and study the plane. Specific model
signatures such as (multiple high -jets) and
, (with $B(t\to b\tau\nu) \
\raisebox{-.5ex}{\rlap{}} \raisebox{.4ex}{}\ 1/3t^\primeb^\prime$ quark,
while top quark and toponium physics could still turn up at LEP-II.Comment: 11 pages (RevTex), 3 figures (not included), NTUTH-93-0
Distinguishing left- and right-handed molecules by two-step coherent pulses
Chiral molecules with broken parity symmetries can be modeled as quantum
systems with cyclic-transition structures. By using these novel properties, we
design two-step laser pulses to distinguish left- and right-handed molecules
from the enantiomers. After the applied pulse drivings, one kind chiral
molecules are trapped in coherent population trapping state, while the other
ones are pumped to the highest states for ionizations. Then, different chiral
molecules can be separated.Comment: 11 pages, 3 figures
- …