11,934 research outputs found

    Superconducting magnesium diboride films on Silicon with Tc0 about 24K grown via vacuum annealing from stoichiometric precursors

    Full text link
    Superconducting magnesium diboride films with Tc0 ~ 24 K and sharp transition \~ 1 K were successfully prepared on silicon substrates by pulsed laser deposition from a stoichiometric MgB2 target. Contrary to previous reports, anneals at 630 degree and a background of 2x10^(-4) torr Ar/4%H2 were performed without the requirement of Mg vapor or an Mg cap layer. This integration of superconducting MgB2 films on silicon may thus prove enabling in superconductor-semiconductor device applications. Images of surface morphology and cross-section profiles by scanning electron microscopy (SEM) show that the films have a uniform surface morphology and thickness. Energy dispersive spectroscopy (EDS) reveals these films were contaminated with oxygen, originating either from the growth environment or from sample exposure to air. The oxygen contamination may account for the low Tc for those in-situ annealed films, while the use of Si as the substrate does not result in a decrease in Tc as compared to other substrates.Comment: 5 pages, 4 figures, 15 references; due to file size limit, images were blure

    FUNCTIONALIZATION OF REGIOREGULAR HEAD-TO-TAIL POLY(3-ALKYLTHIOPHENES) SIDE CHAIN

    Get PDF
    Conjugated polymers possess several intriguing properties including high electrical conductivity, fast and large nonlinear optical responses and visible wavelength chromaticity. Layer by layer conducting polymer structures are even more interesting because they offer many potentia

    Transfer Learning for Thermal Comfort Prediction in Multiple Cities

    Full text link
    HVAC (Heating, Ventilation and Air Conditioning) system is an important part of a building, which constitutes up to 40% of building energy usage. The main purpose of HVAC, maintaining appropriate thermal comfort, is crucial for the best utilisation of energy usage. Besides, thermal comfort is also crucial for well-being, health, and work productivity. Recently, data-driven thermal comfort models have got better performance than traditional knowledge-based methods (e.g. Predicted Mean Vote Model). An accurate thermal comfort model requires a large amount of self-reported thermal comfort data from indoor occupants which undoubtedly remains a challenge for researchers. In this research, we aim to tackle this data-shortage problem and boost the performance of thermal comfort prediction. We utilise sensor data from multiple cities in the same climate zone to learn thermal comfort patterns. We present a transfer learning based multilayer perceptron model from the same climate zone (TL-MLP-C*) for accurate thermal comfort prediction. Extensive experimental results on ASHRAE RP-884, the Scales Project and Medium US Office datasets show that the performance of the proposed TL-MLP-C* exceeds the state-of-the-art methods in accuracy, precision and F1-score

    Two-dimensional molecular para-hydrogen and ortho-deuterium at zero temperature

    Full text link
    We study molecular para-hydrogen (p-H2{\rm H_{2}}) and ortho-deuterium (o-D2{\rm D_{2}}) in two dimensions and in the limit of zero temperature by means of the diffusion Monte Carlo method. We report energetic and structural properties of both systems like the total and kinetic energy per particle, radial pair distribution function, and Lindemann's ratio in the low pressure regime. By comparing the total energy per particle as a function of the density in liquid and solid p-H2{\rm H_{2}}, we show that molecular para-hydrogen, and also ortho-deuterium, remain solid at zero temperature. Interestingly, we assess the quality of three different symmetrized trial wave functions, based on the Nosanow-Jastrow model, in the p-H2{\rm H_{2}} solid film at the variational level. In particular, we analyze a new type of symmetrized trial wave function which has been used very recently to describe solid 4^{4}He and found that also characterizes hydrogen satisfactorily. With this wave function, we show that the one-body density matrix ϱ1(r)\varrho_{1} (r) of solid p-H2{\rm H_{2}} possesses off-diagonal long range order, with a condensate fraction that increases sizably in the negative pressure regime.Comment: 11 pages, 9 figure

    An improved continuous compositional-spread technique based on pulsed-laser deposition and applicable to large substrate areas

    Full text link
    A new method for continuous compositional-spread (CCS) thin-film fabrication based on pulsed-laser deposition (PLD) is introduced. This approach is based on a translation of the substrate heater and the synchronized firing of the excimer laser, with the deposition occurring through a slit-shaped aperture. Alloying is achieved during film growth (possible at elevated temperature) by the repeated sequential deposition of sub-monolayer amounts. Our approach overcomes serious shortcomings in previous in-situ implementations of CCS based on sputtering or PLD, in particular the variations of thickness across the compositional spread and the differing deposition energetics as function of position. While moving-shutter techniques are appropriate for PLD-approaches yielding complete spreads on small substrates (i.e. small as compared to distances over which the deposition parameters in PLD vary, typically about 1 cm), our method can be used to fabricate samples that are large enough for individual compositions to be analyzed by conventional techniques, including temperature-dependent measurements of resistivity and dielectric and magnetic and properties (i.e. SQUID magnetometry). Initial results are shown for spreads of (Sr,Ca)RuO3_3.Comment: 6 pages, 8 figures, accepted for publication in Rev. Sci. Instru

    Online Forum Thread Retrieval using Pseudo Cluster Selection and Voting Techniques

    Full text link
    Online forums facilitate knowledge seeking and sharing on the Web. However, the shared knowledge is not fully utilized due to information overload. Thread retrieval is one method to overcome information overload. In this paper, we propose a model that combines two existing approaches: the Pseudo Cluster Selection and the Voting Techniques. In both, a retrieval system first scores a list of messages and then ranks threads by aggregating their scored messages. They differ on what and how to aggregate. The pseudo cluster selection focuses on input, while voting techniques focus on the aggregation method. Our combined models focus on the input and the aggregation methods. The result shows that some combined models are statistically superior to baseline methods.Comment: The original publication is available at http://www.springerlink.com/. arXiv admin note: substantial text overlap with arXiv:1212.533

    A Wave Function Describing Superfluidity in a Perfect Crystal

    Get PDF
    We propose a many-body wave function that exhibits both diagonal and off-diagonal long-range order. Incorporating short-range correlations due to interatomic repulsion, this wave function is shown to allow condensation of zero-point lattice vibrations and phase rigidity. In the presence of an external velocity field, such a perfect crystal will develop non-classical rotational inertia, exhibiting the supersolid behavior. In a sample calculation we show that the superfluid fraction in this state can be as large as of order 0.01 in a reasonable range of microscopic parameters. The relevance to the recent experimental evidence of a supersolid state by Chan and Kim is discussed.Comment: final version to be published in Journal of Statistical Mechanics: Theory and Experimen

    Light Element Abundance Patterns in the Orion Association: I) HST Observations of Boron in G-dwarfs

    Get PDF
    The boron abundances for two young solar-type members of the Orion association, BD -6 1250 and HD 294297, are derived from HST STIS spectra of the B I transition at 2496.771 A. The best-fit boron abundances for the target stars are 0.13 and 0.44 dex lower than the solar meteoritic value of log e(B)=2.78. An anticorrelation of boron and oxygen is found for Orion when these results are added to previous abundances obtained for 4 B-type stars and the G-type star BD -5 1317. An analysis of the uncertainties in the abundance calculations indicates that the observed anticorrelation is probably real. The B versus O relation observed in the Orion association does not follow the positive correlation of boron versus oxygen which is observed for the field stars with roughly solar metallicity. The observed anticorrelation can be accounted for by a simple model in which two poorly mixed components of gas (supernova ejecta and boron-enriched ambient medium) contribute to the new stars that form within the lifetime of the association. This model predicts an anticorrelation for Be as well, at least as strong as for boron.Comment: 16 pages + 1 table + 7 figures, accepted for publication in Ap
    corecore