11,934 research outputs found
Superconducting magnesium diboride films on Silicon with Tc0 about 24K grown via vacuum annealing from stoichiometric precursors
Superconducting magnesium diboride films with Tc0 ~ 24 K and sharp transition
\~ 1 K were successfully prepared on silicon substrates by pulsed laser
deposition from a stoichiometric MgB2 target. Contrary to previous reports,
anneals at 630 degree and a background of 2x10^(-4) torr Ar/4%H2 were performed
without the requirement of Mg vapor or an Mg cap layer. This integration of
superconducting MgB2 films on silicon may thus prove enabling in
superconductor-semiconductor device applications. Images of surface morphology
and cross-section profiles by scanning electron microscopy (SEM) show that the
films have a uniform surface morphology and thickness. Energy dispersive
spectroscopy (EDS) reveals these films were contaminated with oxygen,
originating either from the growth environment or from sample exposure to air.
The oxygen contamination may account for the low Tc for those in-situ annealed
films, while the use of Si as the substrate does not result in a decrease in Tc
as compared to other substrates.Comment: 5 pages, 4 figures, 15 references; due to file size limit, images
were blure
FUNCTIONALIZATION OF REGIOREGULAR HEAD-TO-TAIL POLY(3-ALKYLTHIOPHENES) SIDE CHAIN
Conjugated polymers possess several intriguing properties including high electrical conductivity, fast and large nonlinear optical responses and visible wavelength chromaticity. Layer by layer conducting polymer structures are even more interesting because they offer many potentia
Transfer Learning for Thermal Comfort Prediction in Multiple Cities
HVAC (Heating, Ventilation and Air Conditioning) system is an important part
of a building, which constitutes up to 40% of building energy usage. The main
purpose of HVAC, maintaining appropriate thermal comfort, is crucial for the
best utilisation of energy usage. Besides, thermal comfort is also crucial for
well-being, health, and work productivity. Recently, data-driven thermal
comfort models have got better performance than traditional knowledge-based
methods (e.g. Predicted Mean Vote Model). An accurate thermal comfort model
requires a large amount of self-reported thermal comfort data from indoor
occupants which undoubtedly remains a challenge for researchers. In this
research, we aim to tackle this data-shortage problem and boost the performance
of thermal comfort prediction. We utilise sensor data from multiple cities in
the same climate zone to learn thermal comfort patterns. We present a transfer
learning based multilayer perceptron model from the same climate zone
(TL-MLP-C*) for accurate thermal comfort prediction. Extensive experimental
results on ASHRAE RP-884, the Scales Project and Medium US Office datasets show
that the performance of the proposed TL-MLP-C* exceeds the state-of-the-art
methods in accuracy, precision and F1-score
Two-dimensional molecular para-hydrogen and ortho-deuterium at zero temperature
We study molecular para-hydrogen (p-) and ortho-deuterium
(o-) in two dimensions and in the limit of zero temperature by
means of the diffusion Monte Carlo method. We report energetic and structural
properties of both systems like the total and kinetic energy per particle,
radial pair distribution function, and Lindemann's ratio in the low pressure
regime. By comparing the total energy per particle as a function of the density
in liquid and solid p-, we show that molecular para-hydrogen, and
also ortho-deuterium, remain solid at zero temperature. Interestingly, we
assess the quality of three different symmetrized trial wave functions, based
on the Nosanow-Jastrow model, in the p- solid film at the
variational level. In particular, we analyze a new type of symmetrized trial
wave function which has been used very recently to describe solid He and
found that also characterizes hydrogen satisfactorily. With this wave function,
we show that the one-body density matrix of solid p- possesses off-diagonal long range order, with a condensate fraction
that increases sizably in the negative pressure regime.Comment: 11 pages, 9 figure
An improved continuous compositional-spread technique based on pulsed-laser deposition and applicable to large substrate areas
A new method for continuous compositional-spread (CCS) thin-film fabrication
based on pulsed-laser deposition (PLD) is introduced. This approach is based on
a translation of the substrate heater and the synchronized firing of the
excimer laser, with the deposition occurring through a slit-shaped aperture.
Alloying is achieved during film growth (possible at elevated temperature) by
the repeated sequential deposition of sub-monolayer amounts. Our approach
overcomes serious shortcomings in previous in-situ implementations of CCS based
on sputtering or PLD, in particular the variations of thickness across the
compositional spread and the differing deposition energetics as function of
position. While moving-shutter techniques are appropriate for PLD-approaches
yielding complete spreads on small substrates (i.e. small as compared to
distances over which the deposition parameters in PLD vary, typically about 1
cm), our method can be used to fabricate samples that are large enough for
individual compositions to be analyzed by conventional techniques, including
temperature-dependent measurements of resistivity and dielectric and magnetic
and properties (i.e. SQUID magnetometry). Initial results are shown for spreads
of (Sr,Ca)RuO.Comment: 6 pages, 8 figures, accepted for publication in Rev. Sci. Instru
Online Forum Thread Retrieval using Pseudo Cluster Selection and Voting Techniques
Online forums facilitate knowledge seeking and sharing on the Web. However,
the shared knowledge is not fully utilized due to information overload. Thread
retrieval is one method to overcome information overload. In this paper, we
propose a model that combines two existing approaches: the Pseudo Cluster
Selection and the Voting Techniques. In both, a retrieval system first scores a
list of messages and then ranks threads by aggregating their scored messages.
They differ on what and how to aggregate. The pseudo cluster selection focuses
on input, while voting techniques focus on the aggregation method. Our combined
models focus on the input and the aggregation methods. The result shows that
some combined models are statistically superior to baseline methods.Comment: The original publication is available at
http://www.springerlink.com/. arXiv admin note: substantial text overlap with
arXiv:1212.533
A Wave Function Describing Superfluidity in a Perfect Crystal
We propose a many-body wave function that exhibits both diagonal and
off-diagonal long-range order. Incorporating short-range correlations due to
interatomic repulsion, this wave function is shown to allow condensation of
zero-point lattice vibrations and phase rigidity. In the presence of an
external velocity field, such a perfect crystal will develop non-classical
rotational inertia, exhibiting the supersolid behavior. In a sample calculation
we show that the superfluid fraction in this state can be as large as of order
0.01 in a reasonable range of microscopic parameters. The relevance to the
recent experimental evidence of a supersolid state by Chan and Kim is
discussed.Comment: final version to be published in Journal of Statistical Mechanics:
Theory and Experimen
Light Element Abundance Patterns in the Orion Association: I) HST Observations of Boron in G-dwarfs
The boron abundances for two young solar-type members of the Orion
association, BD -6 1250 and HD 294297, are derived from HST STIS spectra of the
B I transition at 2496.771 A. The best-fit boron abundances for the target
stars are 0.13 and 0.44 dex lower than the solar meteoritic value of log
e(B)=2.78. An anticorrelation of boron and oxygen is found for Orion when these
results are added to previous abundances obtained for 4 B-type stars and the
G-type star BD -5 1317. An analysis of the uncertainties in the abundance
calculations indicates that the observed anticorrelation is probably real. The
B versus O relation observed in the Orion association does not follow the
positive correlation of boron versus oxygen which is observed for the field
stars with roughly solar metallicity. The observed anticorrelation can be
accounted for by a simple model in which two poorly mixed components of gas
(supernova ejecta and boron-enriched ambient medium) contribute to the new
stars that form within the lifetime of the association. This model predicts an
anticorrelation for Be as well, at least as strong as for boron.Comment: 16 pages + 1 table + 7 figures, accepted for publication in Ap
- …
