The boron abundances for two young solar-type members of the Orion
association, BD -6 1250 and HD 294297, are derived from HST STIS spectra of the
B I transition at 2496.771 A. The best-fit boron abundances for the target
stars are 0.13 and 0.44 dex lower than the solar meteoritic value of log
e(B)=2.78. An anticorrelation of boron and oxygen is found for Orion when these
results are added to previous abundances obtained for 4 B-type stars and the
G-type star BD -5 1317. An analysis of the uncertainties in the abundance
calculations indicates that the observed anticorrelation is probably real. The
B versus O relation observed in the Orion association does not follow the
positive correlation of boron versus oxygen which is observed for the field
stars with roughly solar metallicity. The observed anticorrelation can be
accounted for by a simple model in which two poorly mixed components of gas
(supernova ejecta and boron-enriched ambient medium) contribute to the new
stars that form within the lifetime of the association. This model predicts an
anticorrelation for Be as well, at least as strong as for boron.Comment: 16 pages + 1 table + 7 figures, accepted for publication in Ap