89 research outputs found

    Selective inhibition of the human tie-1 promoter with triplex-forming oligonucleotides targeted to ets binding sites

    Get PDF
    The Tie receptors (Tie-1 and Tie-2/Tek) are essential for angiogenesis and vascular remodeling/integrity. Tie receptors are up-regulated in tumor-associated endothelium, and their inhibition disrupts angiogenesis and can prevent tumor growth as a consequence. To investigate the potential of anti-gene approaches to inhibit tie gene expression for anti-angiogenic therapy, we have examined triple-helical (triplex) DNA formation at 2 tandem Ets transcription factor binding motifs (designated E-1 and E-2) in the human tie-1 promoter. Various tie-1 promoter deletion/mutation luciferase reporter constructs were generated and transfected into endothelial cells to examine the relative activities of E-1 and E-2. The binding of antiparallel and parallel (control) purine motif oligonucleotides (21-22 bp) targeted to E-1 and E-2 was assessed by plasmid DNA fragment binding and electrophoretic mobility shift assays. Triplex-forming oligonucleotides were incubated with tie-1 reporter constructs and transfected into endothelial cells to determine their activity. The Ets binding motifs in the E-1 sequence were essential for human tie-1 promoter activity in endothelial cells, whereas the deletion of E-2 had no effect. Antiparallel purine motif oligonucleotides targeted at E-1 or E-2 selectively formed strong triplex DNA (K(d) approximately 10(-7) M) at 37 degrees C. Transfection of tie-1 reporter constructs with triplex DNA at E-1, but not E-2, specifically inhibited tie-1 promoter activity by up to 75% compared with control oligonucleotides in endothelial cells. As similar multiple Ets binding sites are important for the regulation of several endothelial-restricted genes, this approach may have broad therapeutic potential for cancer and other pathologies involving endothelial proliferation/dysfunction

    Macromolecular interaction on a cAMP responsive region in the urokinase-type plasminogen activator gene: a role of protein phosphorylation.

    No full text
    We have studied the regulation of urokinase-type plasminogen activator gene expression by cAMP in LLC-PK1 cells. We found a cAMP responsive region 3.4 kb upstream of the transcription initiation site, which comprised three protein-binding domains designated A, B, and C. Domains A and B both contain a sequence, TGACG, homologous to a consensus cAMP response element (CRE; TGACGTCA). Effective cAMP-mediated induction was achieved when these two domains were linked with domain C, which by itself did not confer cAMP responsiveness to a heterologous promoter nor contained CRE-like sequence, suggesting a functional cooperation among these domains. Results of competition studies using gel retardation and DNase I footprinting assays suggest that there is a protein-protein interaction between a CRE binding protein and a domain C binding protein. In gel retardation assays, binding of a nuclear protein to domains A and B was strongly augmented by addition of the catalytic subunit of cAMP-dependent protein kinase, whereas the protein binding to domain C was slightly inhibited, suggesting that protein phosphorylation is involved in the regulation of protein-DNA interaction

    Magnetic and electrokinetic manipulations on a microchip device for bead-based immunosensing applications

    No full text
    9 páginas, 5 figuras.The combination of electrophoretic and magnetic manipulations with electrochemical detection for a versatile microfluidic and bead-based biosensing application is demonstrated. Amperometric detection is performed in an off-channel setup by means of a voltammetric cell built at the microchannel outlet and using a gold working electrode. Superparamagnetic particles are introduced and handled inside the channel by means of an external permanent magnet in combination with the electrogenerated flow which allows reproducible loading. The specific detection of phenol as electroactive alkaline phosphatase product is used in this study as proof of concept for a sensitive protein quantification. Characterizations and optimization of different parameters have been carried out in order to achieve the best detection signal. The applicability of the device has been finally demonstrated by the detection of rabbit IgG as model protein after an immunoassay performed on magnetic particles as immobilization platform. A comparison between the electrochemical detection using the developed device and the optical standard detection revealed similar performances with, however, extremely lower amount of reagent used and shorter analysis time. The developed electrophoretic- and magnetic-based chip may open the way to several other biosensing applications with interest not only for other proteins but also for DNA analysis, cell counting, and environmental control.The authors acknowledge funding from the ‘‘Ministerio de Ciencia e Innovación’’ (Madrid, Spain) for Projects MAT 2008-03079/NAN and CSD2006-00012 ‘‘NANOBIOMED’’ (Consolider-Ingenio 2010).Peer reviewe

    Multiple nuclear factors interact with promoter sequences of the urokinase-type plasminogen activator gene.

    No full text
    To characterize proteins that bind to the cyclic AMP inducible promoter of the urokinase-type plasminogen activator gene, we performed a DNAase I footprinting analysis. Within 500 nucleotides upstream of the transcription start site we found eight protected regions due to at least four different binding proteins. Among these is a single binding site for the transcription factor CTF/NF1, which is flanked on each side by two conserved binding sites for the transcription factor Sp1. A region at -380, which shares a similarity with sequences observed in the corresponding regions of other cyclic AMP regulated genes, was protected. This binding site contains a sequence of ten nucleotides which is repeated further upstream at -480 and also protected against DNAase I digestion. Comparisons of extracts from four different cell lines revealed that all DNA binding factors are present in nuclei of uPA expressing and nonexpressing cells. Mechanism underlying hormonal regulation of the gene is discussed
    • …
    corecore