2,531 research outputs found
Novel types of anti-ecloud surfaces
In high power RF devices for space, secondary electron emission appears as
the main parameter governing the multipactor effect and as well as the e-cloud
in large accelerators. Critical experimental activities included development of
coatings with low secondary electron emission yield (SEY) for steel (large
accelerators) and aluminium (space applications). Coatings with surface
roughness of high aspect ratio producing the so-call secondary emission
suppression effect appear as the selected strategy. In this work a detailed
study of the SEY of these technological coatings and also the experimental
deposition methods (PVD and electrochemical) are presented. The coating-design
approach selected for new low SEY coatings include rough metals (Ag, Au, Al),
rough alloys (NEG), particulated and magnetized surfaces, and also graphene
like coatings. It was found that surface roughness also mitigate the SEY
deterioration due to aging processes.Comment: 4 pages, contribution to the Joint INFN-CERN-EuCARD-AccNet Workshop
on Electron-Cloud Effects: ECLOUD'12; 5-9 Jun 2012, La Biodola, Isola d'Elba,
Italy; CERN Yellow Report CERN-2013-002, pp.153-15
HD 145263: Spectral Observations of Silica Debris Disk Formation via Extreme Space Weathering?
We report here time domain infrared spectroscopy and optical photometry of
the HD145263 silica-rich circumstellar disk system taken from 2003 through
2014. We find an F4V host star surrounded by a stable, massive 1e22 - 1e23 kg
(M_Moon to M_Mars) dust disk. No disk gas was detected, and the primary star
was seen rotating with a rapid ~1.75 day period. After resolving a problem with
previously reported observations, we find the silica, Mg-olivine, and
Fe-pyroxene mineralogy of the dust disk to be stable throughout, and very
unusual compared to the ferromagnesian silicates typically found in primordial
and debris disks. By comparison with mid-infrared spectral features of
primitive solar system dust, we explore the possibility that HD 145263's
circumstellar dust mineralogy occurred with preferential destruction of
Fe-bearing olivines, metal sulfides, and water ice in an initially comet-like
mineral mix and their replacement by Fe-bearing pyroxenes, amorphous pyroxene,
and silica. We reject models based on vaporizing optical stellar megaflares,
aqueous alteration, or giant hypervelocity impacts as unable to produce the
observed mineralogy. Scenarios involving unusually high Si abundances are at
odds with the normal stellar absorption near-infrared feature strengths for Mg,
Fe, and Si. Models involving intense space weathering of a thin surface patina
via moderate (T < 1300 K) heating and energetic ion sputtering due to a stellar
superflare from the F4V primary are consistent with the observations. The space
weathered patina should be reddened, contain copious amounts of nanophase Fe,
and should be transient on timescales of decades unless replenished.Comment: 41 Pages, 5 Figures, 5 Tables, Accepted for publication in the
Astrophysical Journa
On the classification of flaring states of blazar
The time evolution of the electromagnetic emission from blazars, in
particular high frequency peaked sources (HBLs), displays irregular activity
not yet understood. In this work we report a methodology capable of
characterizing the time behavior of these variable objects. The Maximum
Likelihood Blocks (MLBs) is a model-independent estimator which sub-divides the
light curve into time blocks, whose length and amplitude are compatible with
states of constant emission rate of the observed source. The MLBs yields the
statistical significance in the rate variations and strongly suppresses the
noise fluctuations in the light curves. We apply the MLBs for the first time on
the long term X-ray light curves (RXTE/ASM) of Mkn~421,Mkn~501, 1ES 1959+650
and 1ES 2155-304, which consist of more than 10 years of observational data
(1996-2007). Using the MLBs interpretation of RXTE/ASM data, the integrated
time flux distribution is determined for each single source considered. We
identify in these distributions the characteristic level as well as the flaring
states of the blazars. All the distributions show a significant component at
negative flux values, most probably caused by an uncertainty in the background
subtraction and by intrinsic fluctuations of RXTE/ASM. This effect interests in
particular short time observations. In order to quantify the probability that
the intrinsic fluctuations give rise to a false identification of a flare, we
study a population of very faint sources and their integrated time flux
distribution. We determine duty cycle or fraction of time a source spent in the
flaring state of the source Mkn~421, Mkn~501, 1ES 1959+650 and 1ES 2155-304.
Moreover, we study the random coincidences between flares and generic sporadic
events such as high energy neutrinos or flares in other wavelengths.Comment: Accepted to A&
A Search for EUV Emission from Comets with the Cosmic Hot Interstellar Plasma Spectrometer (CHIPS)
We have obtained EUV spectra between 90 and 255 \AA of the cometsC/2002 T7
(LINEAR), C/2001 Q4 (NEAT), and C/2004 Q2 (Machholz) near their perihelion
passages in 2004 with the Cosmic Hot Interstellar Plasma Spectrometer (CHIPS).
We obtained contemporaneous data on Comet NEAT Q4 with the X-ray
Observatory ACIS instrument, marking the first simultaneous EUV and X-ray
spectral observations of a comet. The total CHIPS/EUV observing times were 337
ks for Q4, 234 ks for T7, and 483 ks for Machholz and for both CHIPS and
we calculate we have captured all the comet flux in the instrument
field of view. We set upper limits on solar wind charge exchange emission lines
of O, C, N, Ne and Fe occurring in the spectral bandpass of CHIPS. The spectrum
of Q4 obtained with can be reproduced by modeling emission lines of
C, N O, Mg, Fe, Si, S, and Ne solar wind ions. The measured X-ray emission line
intensities are consistent with our predictions from a solar wind charge
exchange model. The model predictions for the EUV emission line intensities are
determined from the intensity ratios of the cascading X-ray and EUV photons
arising in the charge exchange processes. They are compatible with the measured
limits on the intensities of the EUV lines. For comet Q4, we measured a total
X-ray flux of 3.7 ergs cm s, and derive from
model predictions a total EUV flux of 1.5 erg cm
s. The CHIPS observations occurred predominantly while the satellite was
on the dayside of Earth. For much of the observing time, CHIPS performed
observations at smaller solar angles than it was designed for and EUV emission
from the Sun scattered into the instrument limited the sensitivity of the EUV
measurements.Comment: 28 pages total, 4 tables, 7 figures. Accepted by The Astrophysical
Journa
A Zero-Gravity Instrument to Study Low Velocity Collisions of Fragile Particles at Low Temperatures
We discuss the design, operation, and performance of a vacuum setup
constructed for use in zero (or reduced) gravity conditions to initiate
collisions of fragile millimeter-sized particles at low velocity and
temperature. Such particles are typically found in many astronomical settings
and in regions of planet formation. The instrument has participated in four
parabolic flight campaigns to date, operating for a total of 2.4 hours in
reduced gravity conditions and successfully recording over 300 separate
collisions of loosely packed dust aggregates and ice samples. The imparted
particle velocities achieved range from 0.03-0.28 m s^-1 and a high-speed,
high-resolution camera captures the events at 107 frames per second from two
viewing angles separated by either 48.8 or 60.0 degrees. The particles can be
stored inside the experiment vacuum chamber at temperatures of 80-300 K for
several uninterrupted hours using a built-in thermal accumulation system. The
copper structure allows cooling down to cryogenic temperatures before
commencement of the experiments. Throughout the parabolic flight campaigns,
add-ons and modifications have been made, illustrating the instrument
flexibility in the study of small particle collisions.Comment: D. M. Salter, D. Hei{\ss}elmann, G. Chaparro, G. van der Wolk, P.
Rei{\ss}aus, A. G. Borst, R. W. Dawson, E. de Kuyper, G. Drinkwater, K.
Gebauer, M. Hutcheon, H. Linnartz, F. J. Molster, B. Stoll, P. C. van der
Tuijn, H. J. Fraser, and J. Blu
Chandra Spectra of the Soft X-ray Diffuse Background
We present an exploratory Chandra ACIS-S3 study of the diffuse component of
the Cosmic X-ray Background in the 0.3-7 keV band for four directions at high
Galactic latitudes, with emphasis on details of the ACIS instrumental
background modeling. Observations of the dark Moon are used to model the
detector background. A comparison of the Moon data and the data obtained with
ACIS stowed outside the focal area showed that the dark Moon does not emit
significantly in our band. Point sources down to 3 10^-16 erg/s/cm2 in the
0.5-2 keV band are excluded in our two deepest observations. We estimate the
contribution of fainter, undetected sources to be less than 20% of the
remaining CXB flux in this band in all four pointings. In the 0.3-1 keV band,
the diffuse signal varies strongly from field to field and contributes between
55% and 90% of the total CXB signal. It is dominated by emission lines that can
be modeled by a kT=0.1-0.4 keV plasma. In particular, the two fields located
away from bright Galactic features show a prominent line blend at E=580 eV (O
VII + O VIII) and a possible line feature at E~300 eV. The two pointings toward
the North Polar Spur exhibit a brighter O blend and additional bright lines at
730-830 eV (Fe XVII). We measure the total 1-2 keV flux of (1.0-1.2 +-0.2)
10^-15 erg/s/cm2/arcmin (mostly resolved), and the 2-7 keV flux of (4.0-4.5
+-1.5) 10^-15 erg/s/cm2/arcmin. At E>2 keV, the diffuse emission is consistent
with zero, to an accuracy limited by the short Moon exposure and systematic
uncertainties of the S3 background. Assuming Galactic or local origin of the
line emission, we put an upper limit of 3 10^-15 erg/s/cm2/arcmin on the 0.3-1
keV extragalactic diffuse flux.Comment: Minor changes and typo fixes to match journal version. 17 pages, 15
figures (most in color), uses emulateapj.sty. ApJ in pres
High-resolution x-ray telescopes
High-energy astrophysics is a relatively young scientific field, made
possible by space-borne telescopes. During the half-century history of x-ray
astronomy, the sensitivity of focusing x-ray telescopes-through finer angular
resolution and increased effective area-has improved by a factor of a 100
million. This technological advance has enabled numerous exciting discoveries
and increasingly detailed study of the high-energy universe-including accreting
(stellar-mass and super-massive) black holes, accreting and isolated neutron
stars, pulsar-wind nebulae, shocked plasma in supernova remnants, and hot
thermal plasma in clusters of galaxies. As the largest structures in the
universe, galaxy clusters constitute a unique laboratory for measuring the
gravitational effects of dark matter and of dark energy. Here, we review the
history of high-resolution x-ray telescopes and highlight some of the
scientific results enabled by these telescopes. Next, we describe the planned
next-generation x-ray-astronomy facility-the International X-ray Observatory
(IXO). We conclude with an overview of a concept for the next next-generation
facility-Generation X. The scientific objectives of such a mission will require
very large areas (about 10000 m2) of highly-nested lightweight
grazing-incidence mirrors with exceptional (about 0.1-arcsecond) angular
resolution. Achieving this angular resolution with lightweight mirrors will
likely require on-orbit adjustment of alignment and figure.Comment: 19 pages, 11 figures, SPIE Conference 7803 "Adaptive X-ray Optics",
part of SPIE Optics+Photonics 2010, San Diego CA, 2010 August 2-
Infrared study of the eta Chamaeleontis cluster and the longevity of circumstellar discs
We have analyzed JHKL observations of the stellar population of the ~9
Myr-old eta Chamaeleontis cluster. Using infrared (IR) colour-colour and
colour-excess diagrams, we find the fraction of stellar systems with near-IR
excess emission is 0.60 pm 0.13 (2_sigma). This results implies considerably
longer disc lifetimes than found in some recent studies of other young stellar
clusters. For the classical T Tauri (CTT) and weak-lined T Tauri (WTT) star
population, we also find a strong correlation between the IR excess and H_alpha
emission. The IR excesses of these stars indicate a wide range of star-disc
activity; from a CTT star showing high levels of accretion, to CTT - WTT
transition objects with evidence for some on-going accretion, and WTT stars
with weak or absent IR excesses. Of the 15 known cluster members, 4 stars with
IR excesses delta(K-L) > 0.4 mag are likely experiencing on-going accretion
owing to strong or variable optical emission. The resulting accretion fraction
(0.27 pm 0.13; 2_sigma) shows that the accretion phase, in addition to the
discs themselves, can endure for at least ~10 Myr.Comment: 7 pages, 4 figures, accepted for MNRA
- …
