344 research outputs found
Frame-like Actions for Massless Mixed-Symmetry Fields in Minkowski space. Fermions
A frame-like action for massless mixed-symmetry fermionic fields in Minkowski
space is constructed. The action is uniquely determined by gauge invariance.Comment: 12 pages; a few misprints correcte
Conformal self-dual fields
Conformal self-dual fields in flat space-time of even dimension greater than
or equal to four are studied. Ordinary-derivative formulation of such fields is
developed. Gauge invariant Lagrangian with conventional kinetic terms and
corresponding gauge transformations are obtained. Gauge symmetries are realized
by involving the Stueckelberg fields. Realization of global conformal
symmetries is obtained. Light-cone gauge Lagrangian is found. Also, we
demonstrate use of the light-cone gauge for counting of on-shell degrees of
freedom of the conformal self-dual fields.Comment: 28 pages, LaTeX-2e, v3: Discussion of realization of conformal
algebra symmetries on field strengths added to Sections 3,5. Appendices B,C,D
and one reference added. Typos correcte
Spin 3 cubic vertices in a frame-like formalism
Till now most of the results on interaction vertices for massless higher spin
fields were obtained in a metric-like formalism using completely symmetric
(spin-)tensors. In this, the Lagrangians turn out to be very complicated and
the main reason is that the higher the spin one want to consider the more
derivatives one has to introduce. In this paper we show that such
investigations can be greatly simplified if one works in a frame-like
formalism. As an illustration we consider massless spin 3 particle and
reconstruct a number of vertices describing its interactions with lower spin 2,
1 and 0 ones. In all cases considered we give explicit expressions for the
Lagrangians and gauge transformations and check that the algebra of gauge
transformations is indeed closed.Comment: 17 pades, no figure
Dual Linearised Gravity in Arbitrary Dimensions
We construct dual formulation of linearised gravity in first order tetrad
formalism in arbitrary dimensions within the path integral framework following
the standard duality algorithm making use of the global shift symmetry of the
tetrad field. The dual partition function is in terms of the (mixed symmetric)
tensor field in {\it frame-like}
formulation. We obtain in d-dimensions the dual Lagrangian in a closed form in
terms of field strength of the dual frame-like field. Next by coupling a source
with the (linear) Riemann tensor in d-dimensions, dual generating functional is
obtained. Using this an operator mapping between (linear) Riemann tensor and
Riemann tensor corresponding to the dual field is derived and we also discuss
the exchange of equations of motion and Bianchi identity.Comment: 14 pages, typos corrected, Published version: Class. Quantum Grav.
22(2005)538
On the cubic interactions of massive and partially-massless higher spins in (A)dS
Cubic interactions of massive and partially-massless totally-symmetric
higher-spin fields in any constant-curvature background of dimension greater
than three are investigated. Making use of the ambient-space formalism, the
consistency condition for the traceless and transverse parts of the
parity-invariant interactions is recast into a system of partial differential
equations. The latter can be explicitly solved for given s_1-s_2-s_3 couplings
and the 2-2-2 and 3-3-2 examples are provided in detail for general choices of
the masses. On the other hand, the general solutions for the interactions
involving massive and massless fields are expressed in a compact form as
generating functions of all the consistent couplings. The St\"uckelberg
formulation of the cubic interactions as well as their massless limits are also
analyzed.Comment: 42 pages, 2 tables, LaTex. Comments on two-derivative couplings
involving partially-massless spin-2 fields added, typos corrected, references
added. v2: final version to appear in JHEP. v3: formulae (3.4) and (3.9)
correcte
Massive Gravity on de Sitter and Unique Candidate for Partially Massless Gravity
We derive the decoupling limit of Massive Gravity on de Sitter in an
arbitrary number of space-time dimensions d. By embedding d-dimensional de
Sitter into d+1-dimensional Minkowski, we extract the physical helicity-1 and
helicity-0 polarizations of the graviton. The resulting decoupling theory is
similar to that obtained around Minkowski. We take great care at exploring the
partially massless limit and define the unique fully non-linear candidate
theory that is free of the helicity-0 mode in the decoupling limit, and which
therefore propagates only four degrees of freedom in four dimensions. In the
latter situation, we show that a new Vainshtein mechanism is at work in the
limit m^2\to 2 H^2 which decouples the helicity-0 mode when the parameters are
different from that of partially massless gravity. As a result, there is no
discontinuity between massive gravity and its partially massless limit, just in
the same way as there is no discontinuity in the massless limit of massive
gravity. The usual bounds on the graviton mass could therefore equivalently
well be interpreted as bounds on m^2-2H^2. When dealing with the exact
partially massless parameters, on the other hand, the symmetry at m^2=2H^2
imposes a specific constraint on matter. As a result the helicity-0 mode
decouples without even the need of any Vainshtein mechanism.Comment: 30 pages. Some clarifications and references added. New subsection
'Symmetry and Counting in the Full Theory' added. New appendix 'St\"uckelberg
fields in the Na\"ive approach' added. Matches version published in JCA
Mixed-symmetry massive fields in AdS(5)
Free mixed-symmetry arbitrary spin massive bosonic and fermionic fields
propagating in AdS(5) are investigated. Using the light-cone formulation of
relativistic dynamics we study bosonic and fermionic fields on an equal
footing. Light-cone gauge actions for such fields are constructed. Various
limits of the actions are discussed.Comment: v3: 24 pages, LaTeX-2e; typos corrected, footnote 7 and 2 references
added, published in Class. Quantum Gra
BRST approach to Lagrangian formulation of bosonic totally antisymmeric tensor fields in curved space
We apply the BRST approach, previously developed for higher spin field
theories, to gauge invariant Lagrangian construction for antisymmetric massive
and massless bosonic fields in arbitrary d-dimensional curved space. The
obtained theories are reducible gauge models both in massless and massive cases
and the order of reducibility grows with the value of the rank of the
antisymmetric field. In both the cases the Lagrangians contain the sets of
auxiliary fields and possess more rich gauge symmetry in comparison with
standard Lagrangian formulation for the antisymmetric fields. This serves
additional demonstration of universality of the BRST approach for Lagrangian
constructions in various field models.Comment: 12 page
Maxwell-like Lagrangians for higher spins
We show how implementing invariance under divergence-free gauge
transformations leads to a remarkably simple Lagrangian description of massless
bosons of any spin. Our construction covers both flat and (A)dS backgrounds and
extends to tensors of arbitrary mixed-symmetry type. Irreducible and traceless
fields produce single-particle actions, while whenever trace constraints can be
dispensed with the resulting Lagrangians display the same reducible,
multi-particle spectra as those emerging from the tensionless limit of free
open-string field theory. For all explored options the corresponding kinetic
operators take essentially the same form as in the spin-one, Maxwell case.Comment: 77 pages, revised version. Erroneous interpretation and proof of the
gauge-fixing procedure for mixed-symmetry fields corrected. As a consequence,
the mixed-symmetry, one-particle Lagrangians are to be complemented with
conditions on the divergences of the fields; all other conclusions unchanged.
Additional minor changes including references added. To appear in JHE
Cooperative Recombination of a Quantized High-Density Electron-Hole Plasma
We investigate photoluminescence from a high-density electron-hole plasma in
semiconductor quantum wells created via intense femtosecond excitation in a
strong perpendicular magnetic field, a fully-quantized and tunable system. At a
critical magnetic field strength and excitation fluence, we observe a clear
transition in the band-edge photoluminescence from omnidirectional output to a
randomly directed but highly collimated beam. In addition, changes in the
linewidth, carrier density, and magnetic field scaling of the PL spectral
features correlate precisely with the onset of random directionality,
indicative of cooperative recombination from a high density population of free
carriers in a semiconductor environment
- …
