240 research outputs found

    Conformal self-dual fields

    Full text link
    Conformal self-dual fields in flat space-time of even dimension greater than or equal to four are studied. Ordinary-derivative formulation of such fields is developed. Gauge invariant Lagrangian with conventional kinetic terms and corresponding gauge transformations are obtained. Gauge symmetries are realized by involving the Stueckelberg fields. Realization of global conformal symmetries is obtained. Light-cone gauge Lagrangian is found. Also, we demonstrate use of the light-cone gauge for counting of on-shell degrees of freedom of the conformal self-dual fields.Comment: 28 pages, LaTeX-2e, v3: Discussion of realization of conformal algebra symmetries on field strengths added to Sections 3,5. Appendices B,C,D and one reference added. Typos correcte

    Spin 3 cubic vertices in a frame-like formalism

    Full text link
    Till now most of the results on interaction vertices for massless higher spin fields were obtained in a metric-like formalism using completely symmetric (spin-)tensors. In this, the Lagrangians turn out to be very complicated and the main reason is that the higher the spin one want to consider the more derivatives one has to introduce. In this paper we show that such investigations can be greatly simplified if one works in a frame-like formalism. As an illustration we consider massless spin 3 particle and reconstruct a number of vertices describing its interactions with lower spin 2, 1 and 0 ones. In all cases considered we give explicit expressions for the Lagrangians and gauge transformations and check that the algebra of gauge transformations is indeed closed.Comment: 17 pades, no figure

    Dual Linearised Gravity in Arbitrary Dimensions

    Full text link
    We construct dual formulation of linearised gravity in first order tetrad formalism in arbitrary dimensions within the path integral framework following the standard duality algorithm making use of the global shift symmetry of the tetrad field. The dual partition function is in terms of the (mixed symmetric) tensor field Φ[ν1ν2...νd3]ν\Phi_{[\nu_{1}\nu_{2}...\nu_{d-3}]\nu} in {\it frame-like} formulation. We obtain in d-dimensions the dual Lagrangian in a closed form in terms of field strength of the dual frame-like field. Next by coupling a source with the (linear) Riemann tensor in d-dimensions, dual generating functional is obtained. Using this an operator mapping between (linear) Riemann tensor and Riemann tensor corresponding to the dual field is derived and we also discuss the exchange of equations of motion and Bianchi identity.Comment: 14 pages, typos corrected, Published version: Class. Quantum Grav. 22(2005)538

    Mixed-symmetry massive fields in AdS(5)

    Full text link
    Free mixed-symmetry arbitrary spin massive bosonic and fermionic fields propagating in AdS(5) are investigated. Using the light-cone formulation of relativistic dynamics we study bosonic and fermionic fields on an equal footing. Light-cone gauge actions for such fields are constructed. Various limits of the actions are discussed.Comment: v3: 24 pages, LaTeX-2e; typos corrected, footnote 7 and 2 references added, published in Class. Quantum Gra

    No cross-interactions among different tensor fields with the mixed symmetry (3,1) intermediated by a vector field

    Full text link
    Under the hypotheses of analyticity in the coupling constant, locality, Lorentz covariance, and Poincare invariance of the deformations, combined with the preservation of the number of derivatives on each field, the consistent interactions between a collection of free massless tensor gauge fields with the mixed symmetry of a two-column Young diagram of the type (3,1) and one Abelian vector field, respectively a pp-form gauge field, are addressed. The main result is that a single mixed symmetry tensor field from the collection gets coupled to the vector field/pp-form. Our final result resembles to the well known fact from General Relativity according to which there is one graviton in a given world.Comment: 19 page

    On the cubic interactions of massive and partially-massless higher spins in (A)dS

    Get PDF
    Cubic interactions of massive and partially-massless totally-symmetric higher-spin fields in any constant-curvature background of dimension greater than three are investigated. Making use of the ambient-space formalism, the consistency condition for the traceless and transverse parts of the parity-invariant interactions is recast into a system of partial differential equations. The latter can be explicitly solved for given s_1-s_2-s_3 couplings and the 2-2-2 and 3-3-2 examples are provided in detail for general choices of the masses. On the other hand, the general solutions for the interactions involving massive and massless fields are expressed in a compact form as generating functions of all the consistent couplings. The St\"uckelberg formulation of the cubic interactions as well as their massless limits are also analyzed.Comment: 42 pages, 2 tables, LaTex. Comments on two-derivative couplings involving partially-massless spin-2 fields added, typos corrected, references added. v2: final version to appear in JHEP. v3: formulae (3.4) and (3.9) correcte

    BRST approach to Lagrangian formulation of bosonic totally antisymmeric tensor fields in curved space

    Full text link
    We apply the BRST approach, previously developed for higher spin field theories, to gauge invariant Lagrangian construction for antisymmetric massive and massless bosonic fields in arbitrary d-dimensional curved space. The obtained theories are reducible gauge models both in massless and massive cases and the order of reducibility grows with the value of the rank of the antisymmetric field. In both the cases the Lagrangians contain the sets of auxiliary fields and possess more rich gauge symmetry in comparison with standard Lagrangian formulation for the antisymmetric fields. This serves additional demonstration of universality of the BRST approach for Lagrangian constructions in various field models.Comment: 12 page

    Reflection of hydrogen and deuterium atoms from the beryllium, carbon, tungsten surfaces

    Get PDF
    Particle reflection coefficients for scattering of hydrogen and deuterium atoms from amorphous beryllium, carbon and tungsten were obtained, which are of interest for thermonuclear reactor physics. For the case of deuterium scattering from tungsten the data were also calculated for polycrystalline and crystalline target. The calculations were carried out by two methods: by modeling the trajectories of the incident particles and by using the binary collision approximation. Interaction potentials between hydrogen and helium atoms and the selected materials were calculated in the scope of the density function theory using program DMol for choosing wave functions. The dependence of the reflection coefficient RN on the potential well depth was found. The results demonstrate a good agreement with the available experimental values.Peer reviewe
    corecore