6 research outputs found

    Ecological tracers track changes in bird diets and possible routes of exposure to Type E Botulism

    No full text
    Dreissenid mussels have become important components of the Great Lakes biological community since their introduction in the 1980s, but much remains to be understood regarding their effect on energy and nutrient flows in pelagic systems. Here, we report a new method that tracks incorporation of resources of molluskan origin into food webs used by aquatic birds. Biochemical tracers (fatty acids and stable carbon isotopes) are used to characterize species associated with pelagic and benthic food webs in Lake Ontario. Our focus is on the polymethylene-interrupted fatty acids (PMI-FAs) because previous research identified mollusks as their primary source. We found that PMI-FA mass fractions were greater in organisms associated with benthic (e.g. round goby) versus pelagic (e.g. alewife) food webs. Double-crested cormorants that had recently consumed benthic prey fish, i.e. goby, had greater proportions of PMI-FAs in their blood plasma than birds which showed no signs of recent goby ingestion. We did not detect an increase in mass fractions of PMI-FAs in cryogenically archived cormorant eggs following expansion of dreissenid mussels in Lake Ontario. However, following the introduction and expansion of round goby in the lake, PMI-FAs were detected at greater levels in cormorant eggs. These results illustrate how only after dreissenid mussel-facilitated establishment of round goby was the full extent of exotic species disruption of food webs manifested in fish-eating birds. These food web changes may be contributing to negative impacts on aquatic birds exemplified by the emergence of Botulism Type E as a significant mortality factor in this ecosystem

    Polymethylene-interrupted fatty acids: Biomarkers for native and exotic mussels in the Laurentian Great Lakes

    No full text
    Freshwater organisms synthesize a wide variety of fatty acids (FAs); however, the ability to synthesize and/or subsequently modify a particular FA is not universal, making it possible to use certain FAs as biomarkers. Herein we document the occurrence of unusual FAs (polymethylene-interrupted fatty acids; PMI-FAs) in select freshwater organisms in the Laurentian Great Lakes. We did not detect PMI-FAs in: (a) natural seston from Lake Erie and Hamilton Harbor (Lake Ontario), (b) various species of laboratory-cultured algae including a green alga (Scenedesmus obliquus), two cyanobacteria (Aphanizomenon flos-aquae and Synechococystis sp.), two diatoms (Asterionella formosa, Diatoma elongatum) and a chrysophyte (Dinobryon cylindricum) or, (c) zooplankton (Daphnia spp., calanoid or cyclopoid copepods) from Lake Ontario, suggesting that PMI-FAs are not substantively incorporated into consumers at the phytoplankton-zooplankton interface. However, these unusual FAs comprised 4-6% of total fatty acids (on a dry tissue weight basis) of native fat mucket (Lampsilis siliquoidea) and plain pocketbook (L. cardium) mussels and in invasive zebra (Dreissena polymorpha) and quagga (D. bugensis) mussels. We were able to clearly partition Great Lakes\u27 mussels into three separate groups (zebra, quagga, and native mussels) based solely on their PMI-FA profiles. We also provide evidence for the trophic transfer of PMI-FAs from mussels to various fishes in Lakes Ontario and Michigan, further underlining the potential usefulness of PMI-FAs for tracking the dietary contribution of mollusks in food web and contaminant-fate studies. © 2011

    Polymethylene-interrupted fatty acids: Biomarkers for native and exotic mussels in the Laurentian Great Lakes

    No full text
    Freshwater organisms synthesize a wide variety of fatty acids (FAs); however, the ability to synthesize and/or subsequently modify a particular FA is not universal, making it possible to use certain FAs as biomarkers. Herein we document the occurrence of unusual FAs (polymethylene-interrupted fatty acids; PMI-FAs) in select freshwater organisms in the Laurentian Great Lakes. We did not detect PMI-FAs in: (a) natural seston from Lake Erie and Hamilton Harbor (Lake Ontario), (b) various species of laboratory-cultured algae including a green alga (Scenedesmus obliquus), two cyanobacteria (Aphanizomenon flos-aquae and Synechococystis sp.), two diatoms (Asterionella formosa, Diatoma elongatum) and a chrysophyte (Dinobryon cylindricum) or, (c) zooplankton (Daphnia spp., calanoid or cyclopoid copepods) from Lake Ontario, suggesting that PMI-FAs are not substantively incorporated into consumers at the phytoplankton-zooplankton interface. However, these unusual FAs comprised 4-6% of total fatty acids (on a dry tissue weight basis) of native fat mucket (Lampsilis siliquoidea) and plain pocketbook (L. cardium) mussels and in invasive zebra (Dreissena polymorpha) and quagga (D. bugensis) mussels. We were able to clearly partition Great Lakes' mussels into three separate groups (zebra, quagga, and native mussels) based solely on their PMI-FA profiles. We also provide evidence for the trophic transfer of PMI-FAs from mussels to various fishes in Lakes Ontario and Michigan, further underlining the potential usefulness of PMI-FAs for tracking the dietary contribution of mollusks in food web and contaminant-fate studies

    Development of an enzyme-linked immunosorbent assay for atrazine monitoring in water samples

    No full text
    The implementation of the Water Framework Directive (2000/60/EC) requires the establishment of monitoring programs. However, conventional procedures for sample preparation prior to chromatographic analysis are rather expensive and time consuming, being the development of cost-effective and easy tool a necessity. The aim of this work was to develop an enzyme-linked immunosorbent assay (ELISA) able to determine atrazine in water samples. Matrix effects evaluation showed that the increase of humic acid (HA) concentration leads to flattened calibration curves and to the loss of the sigmoidal shape. However, such interference was overcome, by the presence of an environmental sample buffer, incubated together with the samples. Recoveries from 88.5 to 119.2 % were obtained in the presence of HA concentrations up to 20 mgL−1 . An analytical range from 0.003 to 1 μgL−1 was obtained, and atrazine was detected in a sewage treatment plant with concentrations ranging from 14 to 52 ngL−1
    corecore