48 research outputs found
Complex and Controversial Roles of Eicosanoids in Fungal Pathogenesis
The prevalence of fungal infections has increased in immunocompromised patients, leading to millions of deaths annually. Arachidonic acid (AA) metabolites, such as eicosanoids, play important roles in regulating innate and adaptative immune function, particularly since they can function as virulence factors enhancing fungal colonization and are produced by mammalian and lower eukaryotes, such as yeasts and other fungi (Candida albicans, Histoplasma capsulatum and Cryptococcus neoformans). C. albicans produces prostaglandins (PG), Leukotrienes (LT) and Resolvins (Rvs), whereas the first two have been well documented in Cryptococcus sp. and H. capsulatum. In this review, we cover the eicosanoids produced by the host and fungi during fungal infections. These fungal-derived PGs have immunomodulatory functions analogous to their mammalian counterparts. Prostaglandin E2 (PGE2) protects C. albicans and C. parapsilosis cells from the phagocytic and killing activity of macrophages. H. capsulatum PGs augment the fungal burden and host mortality rates in histoplasmosis. However, PGD2 potentiates the effects and production of LTB4, which is a very potent neutrophil chemoattractant that enhances host responses. Altogether, these data suggest that eicosanoids, mainly PGE2, may serve as a new potential target to combat diverse fungal infections
Omics Approaches for Understanding Biogenesis, Composition and Functions of Fungal Extracellular Vesicles
This is the final version. Available on open access from Frontiers Media via the DOI in this recordExtracellular vesicles (EVs) are lipid bilayer structures released by organisms from all kingdoms of life. The diverse biogenesis pathways of EVs result in a wide variety of physical properties and functions across different organisms. Fungal EVs were first described in 2007 and different omics approaches have been fundamental to understand their composition, biogenesis, and function. In this review, we discuss the role of omics in elucidating fungal EVs biology. Transcriptomics, proteomics, metabolomics, and lipidomics have each enabled the molecular characterization of fungal EVs, providing evidence that these structures serve a wide array of functions, ranging from key carriers of cell wall biosynthetic machinery to virulence factors. Omics in combination with genetic approaches have been instrumental in determining both biogenesis and cargo loading into EVs. We also discuss how omics technologies are being employed to elucidate the role of EVs in antifungal resistance, disease biomarkers, and their potential use as vaccines. Finally, we review recent advances in analytical technology and multi-omic integration tools, which will help to address key knowledge gaps in EVs biology and translate basic research information into urgently needed clinical applications such as diagnostics, and immuno- and chemotherapies to fungal infections.NIHPacific Northwest National Laboratory (PNNL)CNPq/Science Without Borders Science Program, BrazilJohns Hopkins Malaria Research InstituteFAPESPCAPESCNPqMedical Research Council (MRC
Candida albicans extracellular vesicles trigger type I IFN signalling via cGAS and STING
The host type I interferon (IFN) pathway is a major signature of inflammation induced by the human fungal pathogen, Candida albicans. However, the molecular mechanism for activating this pathway in the host defence against C. albicans remains unknown. Here we reveal that mice lacking cyclic GMP–AMP synthase (cGAS)–stimulator of IFN genes (STING) pathway components had improved survival following an intravenous challenge by C. albicans. Biofilm-associated C. albicans DNA packaged in extracellular vesicles triggers the cGAS–STING pathway as determined by induction of interferon-stimulated genes, IFNβ production, and phosphorylation of IFN regulatory factor 3 and TANK-binding kinase 1. Extracellular vesicle-induced activation of type I IFNs was independent of the Dectin-1/Card9 pathway and did not require toll-like receptor 9. Single nucleotide polymorphisms in cGAS and STING potently altered inflammatory cytokine production in human monocytes challenged by C. albicans. These studies provide insights into the early innate immune response induced by a clinically significant fungal pathogen.</p
Heat Shock Proteins in Histoplasma and Paracoccidioides
ABSTRACT
Heat shock proteins (Hsps) are highly conserved biomolecules that are constitutively expressed and generally upregulated in response to various stress conditions (biotic and abiotic). Hsps have diverse functions, categorizations, and classifications. Their adaptive expression in fungi indicates their significance in these diverse species, particularly in dimorphic pathogens.
Histoplasma capsulatum
and
Paracoccidioides
species are dimorphic fungi that are the causative agents of histoplasmosis and paracoccidioidomycosis, respectively. This minireview focuses on the pathobiology of Hsps, with particular emphasis on their roles in the morphogenesis and virulence of
Histoplasma
and
Paracoccidioides
and the potential roles of active and passive immunization against Hsps in protection against infection with these fungi.
</jats:p
Fungal Melanin and the Mammalian Immune System
Melanins are ubiquitous complex polymers that are commonly known in humans to cause pigmentation of our skin. Melanins are also present in bacteria, fungi, and helminths. In this review, we will describe the diverse interactions of fungal melanin with the mammalian immune system. We will particularly focus on Cryptococcus neoformans and also discuss other major melanotic pathogenic fungi. Melanin interacts with the immune system through diverse pathways, reducing the effectiveness of phagocytic cells, binding effector molecules and antifungals, and modifying complement and antibody responses
Fungal Metabolomics: A Comprehensive Approach to Understanding Pathogenesis in Humans and Identifying Potential Therapeutics
Metabolomics has emerged as a transformative tool in the study of microbes, including pathogenic fungi, facilitating the identification of unique metabolic profiles that elucidate their pathogenic mechanisms, host interactions, and treatment resistance. This review highlights key applications of metabolomics in understanding fungal metabolites essential for human virulence, such as mycotoxins produced by various fungal species, including Aspergillus fumigatus (gliotoxin, fumagillins) and Candida species (phenylethyl alcohol, TCA cycle metabolites), and secondary metabolites that contribute to pathogenicity. It also explores the metabolic adaptations of fungi in relation to drug resistance and biofilm formation, revealing alterations in key metabolic pathways during infection, as seen in C. albicans and C. auris. Furthermore, metabolomics aids in deciphering host–pathogen interactions, showcasing how fungi like Cryptococcus neoformans and Candida modify host metabolism to promote survival and evade immune responses. The study of antifungal resistance mechanisms has also benefited from metabolomic approaches, identifying specific metabolite patterns that signify resistance, such as in Candida albicans and Candidozyma (Candida) auris, and informing new therapeutic strategies. The integration of metabolomics with other omics technologies is paving the way for a comprehensive understanding of fungal biology and pathogenesis. Such multi-omics approaches are crucial for discovering new therapeutic targets and developing innovative antifungal treatments. Thus, the purpose of this review is to provide an overview of how metabolomics is revolutionizing our understanding of fungal pathogenesis, drug resistance, and host interactions, and to highlight its potential for identifying new therapeutic targets and improving antifungal strategies
Fungal extracellular vesicles: modulating host–pathogen interactions by both the fungus and the host
The secretion of biomolecules by fungal cells occurs via the conventional export of signal peptide-coupled soluble molecules, but it also results from transport within extracellular vesicles (EV). During the last ten years since the description of this non-conventional secretion pathway, varied, interesting biological roles have been associated with EV release by fungi. The various organic molecules carried by these structures are involved in pathogenesis and immune evasion, and may be associated with cell-cell communication. In regards to host-pathogen interactions, EV roles are diverse and organism-specific, although some features seem to be conserved among the pathogenic fungal organisms studied to date. This review aims to highlight our current understanding of the biologically relevant findings regarding EV released by the pathogenic fungal organisms and describes our knowledge of the roles of EV in host-pathogen interactions
Complex and Controversial Roles of Eicosanoids in Fungal Pathogenesis
The prevalence of fungal infections has increased in immunocompromised patients, leading to millions of deaths annually. Arachidonic acid (AA) metabolites, such as eicosanoids, play important roles in regulating innate and adaptative immune function, particularly since they can function as virulence factors enhancing fungal colonization and are produced by mammalian and lower eukaryotes, such as yeasts and other fungi (Candida albicans, Histoplasma capsulatum and Cryptococcus neoformans). C. albicans produces prostaglandins (PG), Leukotrienes (LT) and Resolvins (Rvs), whereas the first two have been well documented in Cryptococcus sp. and H. capsulatum. In this review, we cover the eicosanoids produced by the host and fungi during fungal infections. These fungal-derived PGs have immunomodulatory functions analogous to their mammalian counterparts. Prostaglandin E2 (PGE2) protects C. albicans and C. parapsilosis cells from the phagocytic and killing activity of macrophages. H. capsulatum PGs augment the fungal burden and host mortality rates in histoplasmosis. However, PGD2 potentiates the effects and production of LTB4, which is a very potent neutrophil chemoattractant that enhances host responses. Altogether, these data suggest that eicosanoids, mainly PGE2, may serve as a new potential target to combat diverse fungal infections
