2,225 research outputs found
Health Literacy, Diabetes Prevention, and Self-Management
International audienceOBJECTIVE:To identify the factors that can predict physicians' use of electronic prescribing.DESIGN:All primary care physicians who practised in a single geographic region in Quebec were invited to use a free, advanced, research-based electronic prescribing and drug management system. This natural experiment was studied with an expansion of the Technology Acceptance Model (TAM), which was used to explain early adopters' use of this electronic prescribing technology.SETTING:Quebec city region.PARTICIPANTS:A total of 61 primary care physicians who practised in a single geographic region where there was no electronic prescribing.MAIN OUTCOME MEASURES:Actual use of electronic prescribing; physicians' perceptions of and intentions to use electronic prescribing; physician and practice characteristics.RESULTS:During the 9-month study period, 61 primary care physicians located in 26 practice sites used electronic prescribing to write 15 160 electronic prescriptions for 18 604 patients. Physician electronic prescribing rates varied considerably, from a low of 0 to a high of 75 per 100 patient visits, with a mean utilization rate of 30 per 100 patient visits. Overall, 34% of the variance in the use of electronic prescribing was explained by the expanded TAM. Computer experience (P=.001), physicians' information-acquisition style (P=.01), and mean medication use in the practice (P=.02) were significant predictors. Other TAM factors that generally predict new technology adoption (eg, intention to use, perceived ease of use, and perceived usefulness) were not predictive in this study.CONCLUSION:The adoption of electronic prescribing was a highly challenging task, even among early adopters. The insight that this pilot study provides into the determinants of the adoption of electronic prescribing suggests that novel physician-related factors (eg, information-acquisition style) and practice-related variables (eg, prevalence of medication use) influence the adoption of electronic prescribing
Is gastro-oesophageal reflux a factor in exercise-induced asthma?
AbstractExercise-induced bronchoconstriction (EIB) occurs in the majority of patients with asthma. The relationship between asthma and gastro-oesophageal reflux (GER) is well defined, and the reports of exertional gastro-oesophageal acid reflux in healthy subjects, prompted us to study the relationship between EIB and GER.Following an overnight fast and medication withholding, 15 asthmatics and 15 normal subjects were placed on continuous monitoring of oesophageal pH and ECG. After baseline monitoring of oesophageal pH, at rest, for 30 min, spirometry was performed. Thereafter, the subjects underwent rigorous treadmill exercise for 8 min followed by spirometry, 10 min after running.Twelve out of 15 asthmatics and none in the control group demonstrated significant fall in FEV1 in response to exercise. However, only six out of 15 normal subjects and three in the asthmatic group had evidence of GER during or following exercise.We concluded that there is no significant correlation between EIB and GER in patients with asthma
A complementary view on the growth of directory trees
Trees are a special sub-class of networks with unique properties, such as the
level distribution which has often been overlooked. We analyse a general tree
growth model proposed by Klemm {\em et. al.} (2005) to explain the growth of
user-generated directory structures in computers. The model has a single
parameter which interpolates between preferential attachment and random
growth. Our analysis results in three contributions: First, we propose a more
efficient estimation method for based on the degree distribution, which is
one specific representation of the model. Next, we introduce the concept of a
level distribution and analytically solve the model for this representation.
This allows for an alternative and independent measure of . We argue that,
to capture real growth processes, the estimations from the degree and the
level distributions should coincide. Thus, we finally apply both
representations to validate the model with synthetically generated tree
structures, as well as with collected data of user directories. In the case of
real directory structures, we show that measured from the level
distribution are incompatible with measured from the degree distribution.
In contrast to this, we find perfect agreement in the case of simulated data.
Thus, we conclude that the model is an incomplete description of the growth of
real directory structures as it fails to reproduce the level distribution. This
insight can be generalised to point out the importance of the level
distribution for modeling tree growth.Comment: 16 pages, 7 figure
Geometry of River Networks II: Distributions of Component Size and Number
The structure of a river network may be seen as a discrete set of nested
sub-networks built out of individual stream segments. These network components
are assigned an integral stream order via a hierarchical and discrete ordering
method. Exponential relationships, known as Horton's laws, between stream order
and ensemble-averaged quantities pertaining to network components are observed.
We extend these observations to incorporate fluctuations and all higher moments
by developing functional relationships between distributions. The relationships
determined are drawn from a combination of theoretical analysis, analysis of
real river networks including the Mississippi, Amazon and Nile, and numerical
simulations on a model of directed, random networks. Underlying distributions
of stream segment lengths are identified as exponential. Combinations of these
distributions form single-humped distributions with exponential tails, the sums
of which are in turn shown to give power law distributions of stream lengths.
Distributions of basin area and stream segment frequency are also addressed.
The calculations identify a single length-scale as a measure of size
fluctuations in network components. This article is the second in a series of
three addressing the geometry of river networks.Comment: 16 pages, 13 figures, 4 tables, Revtex4, submitted to PR
Dynamic Analysis of Vascular Morphogenesis Using Transgenic Quail Embryos
Background: One of the least understood and most central questions confronting biologists is how initially simple clusters or sheet-like cell collectives can assemble into highly complex three-dimensional functional tissues and organs. Due to the limits of oxygen diffusion, blood vessels are an essential and ubiquitous presence in all amniote tissues and organs. Vasculogenesis, the de novo self-assembly of endothelial cell (EC) precursors into endothelial tubes, is the first step in blood vessel formation [1]. Static imaging and in vitro models are wholly inadequate to capture many aspects of vascular pattern formation in vivo, because vasculogenesis involves dynamic changes of the endothelial cells and of the forming blood vessels, in an embryo that is changing size and shape.
Methodology/Principal Findings: We have generated Tie1 transgenic quail lines Tg(tie1:H2B-eYFP) that express H2B-eYFP in all of their endothelial cells which permit investigations into early embryonic vascular morphogenesis with unprecedented clarity and insight. By combining the power of molecular genetics with the elegance of dynamic imaging, we follow the precise patterning of endothelial cells in space and time. We show that during vasculogenesis within the vascular plexus, ECs move independently to form the rudiments of blood vessels, all while collectively moving with gastrulating tissues that flow toward the embryo midline. The aortae are a composite of somatic derived ECs forming its dorsal regions and the splanchnic derived ECs forming its ventral region. The ECs in the dorsal regions of the forming aortae exhibit variable mediolateral motions as they move rostrally; those in more ventral regions show significant lateral-to-medial movement as they course rostrally.
Conclusions/Significance: The present results offer a powerful approach to the major challenge of studying the relative role(s) of the mechanical, molecular, and cellular mechanisms of vascular development. In past studies, the advantages of the molecular genetic tools available in mouse were counterbalanced by the limited experimental accessibility needed for imaging and perturbation studies. Avian embryos provide the needed accessibility, but few genetic resources. The creation of transgenic quail with labeled endothelia builds upon the important roles that avian embryos have played in previous studies of vascular development
Simple and robust synchrotron and laboratory solutions for high-resolution multimodal X-ray phase-based imaging
Edge illumination X-ray phase contrast imaging techniques are capable of quantitative retrieval of differential phase, absorption and X-ray scattering. We have recently developed a series of approaches enabling high-resolution implementations, both using synchrotron radiation and laboratory-based set-ups. Three-dimensional reconstruction of absorption, phase and dark-field can be achieved with a simple rotation of the sample. All these approaches share a common trait which consists in the use of an absorber that shapes the radiation field, in order to make the phase modulations introduced by the sample detectable. This enables a well-defined and high-contrast structuring of the radiation field as well as an accurate modelling of the effects that are related to the simultaneous use of a wide range of energies. Moreover, it can also be adapted for use with detectors featuring large pixel sizes, which could be desirable when a high detection efficiency is important
Interaction of perceptual grouping and crossmodal temporal capture in tactile apparent-motion
Previous studies have shown that in tasks requiring participants to report the direction of apparent motion, task-irrelevant mono-beeps can "capture'' visual motion perception when the beeps occur temporally close to the visual stimuli. However, the contributions of the relative timing of multimodal events and the event structure, modulating uni- and/or crossmodal perceptual grouping, remain unclear. To examine this question and extend the investigation to the tactile modality, the current experiments presented tactile two-tap apparent-motion streams, with an SOA of 400 ms between successive, left-/right-hand middle-finger taps, accompanied by task-irrelevant, non-spatial auditory stimuli. The streams were shown for 90 seconds, and participants' task was to continuously report the perceived (left-or rightward) direction of tactile motion. In Experiment 1, each tactile stimulus was paired with an auditory beep, though odd-numbered taps were paired with an asynchronous beep, with audiotactile SOAs ranging from -75 ms to 75 ms. Perceived direction of tactile motion varied systematically with audiotactile SOA, indicative of a temporal-capture effect. In Experiment 2, two audiotactile SOAs-one short (75 ms), one long (325 ms)-were compared. The long-SOA condition preserved the crossmodal event structure (so the temporal-capture dynamics should have been similar to that in Experiment 1), but both beeps now occurred temporally close to the taps on one side (even-numbered taps). The two SOAs were found to produce opposite modulations of apparent motion, indicative of an influence of crossmodal grouping. In Experiment 3, only odd-numbered, but not even-numbered, taps were paired with auditory beeps. This abolished the temporal-capture effect and, instead, a dominant percept of apparent motion from the audiotactile side to the tactile-only side was observed independently of the SOA variation. These findings suggest that asymmetric crossmodal grouping leads to an attentional modulation of apparent motion, which inhibits crossmodal temporal-capture effects
Kanamycin resistance during in vitro development of pollen from transgenic tomato plants
Effects of kanamycin on pollen germination and tube growth of pollen from non-transformed plants and from transgenic tomato plants containing a chimaeric kanamycin resistance gene were determined. Germination of pollen was not affected by the addition of kanamycin to the medium in both genotypes. Kanamycin, however, severely affected tube growth of pollen from non-transformed plants, while pollen from plants containing the chimaeric gene were less sensitive and produced significantly longer tubes at kanamycin concentrations between 200-400 mg l-1. Apparently, this resistance for kanamycin correlates with the expression of the chimaeric gene during male gametophytic development.
Improving Global Multi-target Tracking with Local Updates
Conference dates: September 6-7 & 12, 2014We propose a scheme to explicitly detect and resolve ambiguous situations in multiple target tracking. During periods of uncertainty, our method applies multiple local single target trackers to hypothesise short term tracks. These tracks are combined with the tracks obtained by a global multi-target tracker, if they result in a reduction in the global cost function. Since tracking failures typically arise when targets become occluded, we propose a local data association scheme to maintain the target identities in these situations. We demonstrate a reduction of up to 50% in the global cost function, which in turn leads to superior performance on several challenging benchmark sequences. Additionally, we show tracking results in sports videos where poor video quality and frequent and severe occlusions between multiple players pose difficulties for state-of-the-art trackers.Anton Milan, Rikke Gade, Anthony Dick, Thomas B. Moeslund, and Ian Rei
- …
