10 research outputs found

    Circular economy in the european construction sector: a review of strategies for implementation in building renovation

    Get PDF
    Building renovation was declared a key point for sustainable development, however, the renovation rate of residential buildings in the European Union is insufficient to meet the climate and energy targets set. This paper analyses the main circular economy models used in the construction sector, as well as the situation of the building renovation market, to set a framework for circular economy models in building renovation. Of all the existing strategies in this sector, design, material recovery, building renovation and end-of-life actions would be the best, respectively. It also includes a market analysis consisting of a literature review covering PEST perspectives (political, economic, social and technical) and a SWOT analysis (strengths, weaknesses, opportunities and threats), concluding with a market gap analysis. The results of these analyses allow the development of a series of suggestions and strategies to be followed in order to solve the main barriers that hinder the implementation of the circular economy in the building´s renovation sector. © 2022 by the authors. Licensee MDPI, Basel, Switzerland

    Analysis of the environmental performance of life-cycle building waste management strategies in tertiary buildings

    Get PDF
    At urban level, the generation Municipal Solid Waste and Construction and Demolition Waste is mostly related to the life-cycle of buildings. An evaluation method based on Life Cycle Assessment methodology is presented in this paper to make an analysis of the environmental performance of different life-cycle building waste management strategies in tertiary buildings. As a case study, several waste management strategies considering a tertiary building located in the city of Zaragoza in Spain, are studied. The aim of the case study is to compare the environmental impacts, in terms of Global Warming Potential, of the scenarios proposed focussing on the waste minimisation and avoidance of landfilling of at least 10% for the Municipal Solid Waste generation during a building''s use stage, and Construction and Demolition Waste generated during its construction and end-of-life. In case of Municipal Solid Waste, the results show that when a recovery scenario includes energy recovery from the residual fraction of the mechanical-biological treatment plant in the form of Refuse Derived Fuel, greater benefits in terms of the Global Warming Potential are obtained than with current scenarios of landfill deposition of the residual fraction. On the other hand, in case of Construction and Demolition Waste, a similar situation can be observed in case of an increase of the recovery rates of metals

    Response Surface Method to Calculate Energy Savings Associated with Thermal Comfort Improvement in Buildings

    Get PDF
    In developed countries, a large part of the building stock in 2050 will consist of currently existing buildings. Consequently, in order to achieve the objectives in terms of energy efficiency in the building sector we must consider not only new infrastructures but also the old ones. A reduction in energy consumption for climate control of between 50 and 90% can be achieved by rehabilitation and the implementation of different energy efficiency measures. Currently, these measures to reduce energy consumption and associated CO2 emissions can be modelled using computer tools. However, high precision and detail of thermal behaviour models through simulations can mean a great computational cost for companies, which results in a blockage of servers and workers. In this paper, the Response Surface Methodology (RSM) is presented as an innovative methodology for the simplification of models for calculation of the energy savings associated with thermal comfort improvement in buildings. A single-family house model, located in three different climates, is presented as a case study in order to validate the proposed methodology. Different scenarios were simulated, addressing heating and cooling temperature set points and external wall insulation represented by the transmittance (U-value). Results obtained from energy simulation using Design Builder were contrasted against those estimated from the simplified model extracted from the RSM analysis. The results revealed a deviation lower than 3% when comparing both methods. Therefore, the simplified mathematical prediction models are demonstrated to be suitable for the study of the energy performance of buildings, saving computational time, costs and associated human resources. © 2022 by the authors. Licensee MDPI, Basel, Switzerland

    Sustainability of non-residential buildings and relevance of main environmental impact contributors’ variability. A case study of food retail stores buildings

    Get PDF
    European tertiary sector represents about 13% of EU-28 final energy consumption. As an example, food retail stores sector amounts about 3% of EU members’ electricity consumption. Furthermore, currently, fluorinated gases, which are the most used refrigerants for space conditioning and refrigeration systems, involve 2% of EU emissions, having risen since 1990 by 60%. Specifically, commercial refrigeration is responsible for 35% of EU-27 CO2-eq emissions related to refrigerants. A methodology based on Life Cycle Assessment standards is presented in this study to assess the energy and environmental implications of non-residential buildings, adapted to particularities of food retail stores buildings, in terms of Primary Energy Demand, carbon footprint and water demand. Relying on a reference building, constructive improvements are tested and evaluated. Then a sensitivity analysis of several configurations of food retail stores are studied considering their building location, refrigerant typology and schedule. Results show that electricity and refrigerants are the main contributors and sensitive to potential improvements. In fact, static calculations reveal that a food retail store may involve, in terms of Global Warming Potential, about 800 kgCO2- eq/m2 year, more than 20 times higher than a regular building. Thus, future scenarios are estimated through a dynamic calculation methodology. Due to optimal dimensioning and configuration of the refrigeration system, together with refrigerant replacement, an 80% of Global Warming Potential minimization can be reached. Furthermore, temporal dynamic assessment can present a variability of environmental impacts estimation from static Life Cycle Assessment of more than 15%, by considering a wider approach towards sustainability assessment of non-residential buildings

    Patterns of Medicinal Use of Palms Across Northwestern South America

    No full text

    Palm Uses in Northwestern South America: A Quantitative Review

    No full text

    Body composition and lung cancer-associated cachexia in TRACERx

    No full text
    Cancer-associated cachexia (CAC) is a major contributor to morbidity and mortality in individuals with non-small cell lung cancer. Key features of CAC include alterations in body composition and body weight. Here, we explore the association between body composition and body weight with survival and delineate potential biological processes and mediators that contribute to the development of CAC. Computed tomography-based body composition analysis of 651 individuals in the TRACERx (TRAcking non-small cell lung Cancer Evolution through therapy (Rx)) study suggested that individuals in the bottom 20th percentile of the distribution of skeletal muscle or adipose tissue area at the time of lung cancer diagnosis, had significantly shorter lung cancer-specific survival and overall survival. This finding was validated in 420 individuals in the independent Boston Lung Cancer Study. Individuals classified as having developed CAC according to one or more features at relapse encompassing loss of adipose or muscle tissue, or body mass index-adjusted weight loss were found to have distinct tumor genomic and transcriptomic profiles compared with individuals who did not develop such features. Primary non-small cell lung cancers from individuals who developed CAC were characterized by enrichment of inflammatory signaling and epithelial–mesenchymal transitional pathways, and differentially expressed genes upregulated in these tumors included cancer-testis antigen MAGEA6 and matrix metalloproteinases, such as ADAMTS3. In an exploratory proteomic analysis of circulating putative mediators of cachexia performed in a subset of 110 individuals from TRACERx, a significant association between circulating GDF15 and loss of body weight, skeletal muscle and adipose tissue was identified at relapse, supporting the potential therapeutic relevance of targeting GDF15 in the management of CAC
    corecore