197 research outputs found

    Synaptic AMPA receptor composition in development, plasticity and disease

    Get PDF

    Study of the mechanical behavior of asphalt mixtures using fractional rheology to model their viscoelasticity

    Get PDF
    This study focuses on the mechanical behavior of asphalt mixtures composed of aggregate particles attached with an asphalt binder. Asphalt mixtures are viscoelastic composite materials widely used in the construction of pavement layers. The modelling of such materials is currently done using the Burgers model. However, this model is limited when explaining some of the viscoelastic phenomena of an asphalt mixture, mainly because the Burgers model was developed for a single material with a dual nature. This work presents a new approach that provides a more appropriate framework for studying asphalt mixtures. The model assumes an aggregate particle enclosed by an asphalt material. Viscoelastic equations were developed using derivatives of fractional order. Then, the creep, recovery, and relaxation phenomena in an asphalt mixture were analyzed using the new model. Unlike the Burgers model, the new model can predict the elastic jump observed at the beginning of the creep modulus. Thus, the new model seems to describe better those practical cases of asphalt mixtures used in the construction of pavement layers. The new model can be used to modify the properties of the binder for designing optimized and more resistant asphalt mixtures

    Damage evaluation during installation of geosynthetics used in asphalt pavements

    Get PDF
    Geosynthetics are commonly used as anti-reflective cracking systems in asphalt pavements. The rehabilitation design methods use the characteristics of as-received geosynthetics as inputs. However, these materials undergo physical damage during their installation due to mechanical and thermal loads which currently are not taken into account in the design processes. These loads can produce a reduction in geosynthetic strength and therefore, it is necessary to know the secant modulus after installation in order to improve the pavement design incorporating these materials. The secant modulus of a material indicates its initial stiffness. This paper describes an experimental study of damage due to installation of five different geosynthetics using three different procedures: (i) mechanical damage induced in the laboratory considering the action of aggregates, (ii) in situ mechanical and thermal damage due to actual installation in a test section, and (iii) a new mechanical and thermal damage experimental test developed with the aim of reproducing the real installation conditions. The main results of the study indicate that the obtained secant modulus of the tested geosynthetics reduced after applying the three damage procedures, and the loss of properties differed depending on the type and constitutive material and on the applied damage procedure.This investigation was supported by the research Project ‘Rehabilitation of roads and highways (REHABCAR)’ file number IPT-370000–2010–029, led by DRAGADOS (ACS Group), in collaboration with GEOCISA and ASFALTOS AUGUSTA among others. The project has been funded by the Ministry of Economy and Competitiveness (MINECO) within the National Plan for Scientific Research, Development and Innovation 2008–2011 (INNPACTO 2010) and the European Union under ERDF Funds (European Regional Development Fund)

    Test methods and influential factors for analysis of bonding between bituminous pavement layers

    Get PDF
    The durability and maintenance of pavements depend on several factors. One of the most influential is the bond between layers. This bond is responsible for ensuring all layers behave as a single entity, reducing cracks and deformation of the pavement. Several methods, developed by different authors over the past 30 years, to measure bonding between layers are analyzed in this paper. Different research lines are discussed, concluding that the most influential variables are: tack coat type, dosage, mixture type, surface characteristics, temperature, and emulsion breaking time. In order to reach the highest bond strength values, the following factors should be considered: high values of surface macro-texture, low temperatures, the use of heat-adhesive emulsion, a dosage from 300 to 450 g/m2 of residual bitumen and the compaction after emulsion break. Moreover, a non-destructive test method to assess tack coat dosage on site is proposed

    Somatic Accumulation of GluA1-AMPA Receptors Leads to Selective Cognitive Impairments in Mice

    Get PDF
    © 2018 Bannerman, Borchardt, Jensen, Rozov, Haj-Yasein, Burnashev, Zamanillo, Bus, Grube, Adelmann, Rawlins and Sprengel. The GluA1 subunit of the L-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) plays a crucial, but highly selective, role in cognitive function. Here we analyzed AMPAR expression, AMPAR distribution and spatial learning in mice (Gria1R/R), expressing the “trafficking compromised” GluA1(Q600R) point mutation. Our analysis revealed somatic accumulation and reduction of GluA1(Q600R) and GluA2, but only slightly reduced CA1 synaptic localization in hippocampi of adult Gria1R/R mice. These immunohistological changes were accompanied by a strong reduction of somatic AMPAR currents in CA1, and a reduction of plasticity (short-term and long-term potentiation, STP and LTP, respectively) in the CA1 subfield following tetanic and theta-burst stimulation. Nevertheless, spatial reference memory acquisition in the Morris water-maze and on an appetitive Y-maze task was unaffected in Gria1R/R mice. In contrast, spatial working/short-term memory during both spontaneous and rewarded alternation tasks was dramatically impaired. These findings identify the GluA1(Q600R) mutation as a loss of function mutation that provides independent evidence for the selective role of GluA1 in the expression of short-term memory

    Ionotropic Glutamate Receptor AMPA 1 Is Associated with Ovulation Rate

    Get PDF
    Ionotropic glutamate receptors mediate most excitatory neurotransmission in the central nervous system by opening ion channels upon the binding of glutamate. Despite the essential roles of glutamate in the control of reproduction and anterior pituitary hormone secretion, there is a limited understanding of how glutamate receptors control ovulation. Here we reveal the function of the ionotropic glutamate receptor AMPA-1 (GRIA1) in ovulation. Based on a genome-wide association study in Bos taurus, we found that ovulation rate is influenced by a variation in the N-terminal leucine/isoleucine/valine-binding protein (LIVBP) domain of GRIA1, in which serine is replaced by asparagine. GRIA1Asn has a weaker affinity to glutamate than GRIA1Ser, both in Xenopus oocytes and in the membrane fraction of bovine brain. This single amino acid substitution leads to the decreased release of gonadotropin-releasing hormone (GnRH) in immortalized hypothalamic GT1-7 cells. Cows with GRIA1Asn have a slower luteinizing hormone (LH) surge than cows with GRIA1Ser. In addition, cows with GRIA1Asn possess fewer immature ovarian follicles before superovulation and have a lower response to hormone treatment than cows with GRIA1Ser. Our work identified that GRIA1 is a critical mediator of ovulation and that GRIA1 might be a useful target for reproductive therapy

    ApoE Receptor 2 Regulates Synapse and Dendritic Spine Formation

    Get PDF
    Apolipoprotein E receptor 2 (ApoEr2) is a postsynaptic protein involved in long-term potentiation (LTP), learning, and memory through unknown mechanisms. We examined the biological effects of ApoEr2 on synapse and dendritic spine formation-processes critical for learning and memory.In a heterologous co-culture synapse assay, overexpression of ApoEr2 in COS7 cells significantly increased colocalization with synaptophysin in primary hippocampal neurons, suggesting that ApoEr2 promotes interaction with presynaptic structures. In primary neuronal cultures, overexpression of ApoEr2 increased dendritic spine density. Consistent with our in vitro findings, ApoEr2 knockout mice had decreased dendritic spine density in cortical layers II/III at 1 month of age. We also tested whether the interaction between ApoEr2 and its cytoplasmic adaptor proteins, specifically X11α and PSD-95, affected synapse and dendritic spine formation. X11α decreased cell surface levels of ApoEr2 along with synapse and dendritic spine density. In contrast, PSD-95 increased cell surface levels of ApoEr2 as well as synapse and dendritic spine density.These results suggest that ApoEr2 plays important roles in structure and function of CNS synapses and dendritic spines, and that these roles are modulated by cytoplasmic adaptor proteins X11α and PSD-95

    Performance update of an event-type based analysis for the Cherenkov Telescope Array

    Get PDF
    The Cherenkov Telescope Array (CTA) will be the next-generation observatory in the field of very-high-energy (20 GeV to 300 TeV) gamma-ray astroparticle physics. The traditional approach to data analysis in this field is to apply quality cuts, optimized using Monte Carlo simulations, on the data acquired to maximize sensitivity. Subsequent steps of the analysis typically use the surviving events to calculate one set of instrument response functions (IRFs) to physically interpret the results. However, an alternative approach is the use of event types, as implemented in experiments such as the Fermi-LAT. This approach divides events into sub-samples based on their reconstruction quality, and a set of IRFs is calculated for each sub-sample. The sub-samples are then combined in a joint analysis, treating them as independent observations. In previous works we demonstrated that event types, classified using Machine Learning methods according to their expected angular reconstruction quality, have the potential to significantly improve the CTA angular and energy resolution of a point-like source analysis. Now, we validated the production of event-type wise full-enclosure IRFs, ready to be used with science tools (such as Gammapy and ctools). We will report on the impact of using such an event-type classification on CTA high-level performance, compared to the traditional procedure

    Expected exclusion limits to TeV dark matter from the Perseus Cluster with the Cherenkov Telescope Array

    Get PDF
    Clusters of galaxies are the largest gravitationally-bound structures in the Universe. They are composed of galaxies and gas (approximately 15% of the total mass) mostly dark matter (DM, accounts up to 85% of the total mass). If the DM is composed of Weakly Interacting Massive Particles (WIMPs), galaxy clusters represent one of the best targets to search for gamma-ray signals induced by the decay of WIMPs, with masses around the TeV scale. Due to its sensitivity and energy range of operation (from 20 GeV to 300 TeV), the Cherenkov Telescope Array (CTA) Observatory has a unique opportunity to test WIMPs with masses close to the unitarity limit. This will complement the searches for DM from other gamma-ray observatories as well as direct and collider experiments. The CTA Observatory is planning to search for gamma-ray emission, either its origin may be cosmic-ray (CR) or DM related, in the Perseus galaxy cluster during the first years of operation. In this poster, we will present the software created to perform the analysis using the ctools software and the corresponding results
    corecore