30,645 research outputs found
Quantum state redistribution based on a generalized decoupling
We develop a simple protocol for a one-shot version of quantum state
redistribution, which is the most general two-terminal source coding problem.
The protocol is simplified from a combination of protocols for the fully
quantum reverse Shannon and fully quantum Slepian-Wolf problems, with its
time-reversal symmetry being apparent. When the protocol is applied to the case
where the redistributed states have a tensor power structure, more natural
resource rates are obtained
Monoclinic phase in the relaxor-based piezo-/ ferroelectric Pb(MgNb-PbTiO system
A ferroelectric monoclinic phase of space group ( type) has been
discovered in 0.65Pb(MgNb-0.35PbTiO by means of high
resolution synchrotron X-ray diffraction. It appears at room temperature in a
single crystal previously poled under an electric field of 43 kV/cm applied
along the pseudocubic [001] direction, in the region of the phase diagram
around the morphotropic phase boundary between the rhombohedral (R3m) and the
tetragonal (P4mm) phases. The monoclinic phase has lattice parameters a = 5.692
A, b = 5.679 A, c = 4.050 A and = , with the b-axis
oriented along the pseudo-cubic [110] direction . It is similar to the
monoclinic phase observed in PbZrTiO, but different from that
recently found in Pb(ZnNb-PbTiO, which is of space
group ( type).Comment: Revised version after referees' comments. PDF file. 6 pages, 4
figures embedde
Diffuse Neutron Scattering Study of Relaxor Ferroelectric (1-x)Pb(Zn1/3Nb2/3)O3-xPbTiO3(PZN-xPT)
Diffuse neutron scattering is a valuable tool to obtain information about the
size and orientation of the polar nanoregions that are a characteristic feature
of relaxor ferroelectrics. In this paper, we present new diffuse scattering
results obtained on Pb(Zn1/3Nb2/3)O3 (PZN for short) and
(1-x)Pb(Zn1/3Nb2/3)O3-xPbTiO3(PZN-xPT)single crystals (with x=4.5 and 9%),
around various Bragg reflections and along three symmetry directions in the
[100]-[011] zone. Diffuse scattering is observed around reflections with mixed
indices, (100), (011) and (300), and along transverse and diagonal directions
only. No diffuse scattering is found in longitudinal scans. The diffuse
scattering peaks can be fitted well with a Lorentzian function, from which a
correlation length is extracted. The correlation length increases with
decreasing temperatures down to the transition at Tc, first following a
Curie-Weiss law, then departing from it and becoming flat at very low
temperatures. These results are interpreted in terms of three temperature
regions: 1) dynamic polarization fluctuations (i.e. with a finite lifetime) at
high temperatures, 2) static polarization reorientations (condensation of polar
nanoregions) that can still reorient as a unit (relaxor behavior) at
intermediate temperatures and 3) orientational freezing of the polar
nanoregions with random strain fields in pure PZN or a structural phase
transition in PZN-xPT at low temperatures. The addition of PT leads to a
broadening of the diffuse scattering along the diagonal ([111]) relative to the
transverse ([100]) direction, indicating a change in the orientation of the
polar regions. Also, with the addition of PT, the polar nanoregions condense at
a higher temperature above Tc.Comment: AIP 6x9 style files, 9 pages, 5 figures, Conference-Fundamental
Physics of Ferroelectrics 200
Exploration of nonlocalities in ensembles consisting of bipartite quantum states
It is revealed that ensembles consisting of multipartite quantum states can
exhibit different kinds of nonlocalities. An operational measure is introduced
to quantify nonlocalities in ensembles consisting of bipartite quantum states.
Various upper and lower bounds for the measure are estimated and the exact
values for ensembles consisting of mutually orthogonal maximally entangled
bipartite states are evaluated.Comment: The title and some contents changed, 4 pages, no figure
Guiding optical flows by photonic crystal slabs made of dielectric cylinders
We investigate the electromagnetic propagation in two-dimensional photonic
crystals, formed by parallel dielectric cylinders embedded a uniform medium.
The frequency band structure is computed using the standard plane-wave
expansion method, while the propagation and scattering of the electromagnetic
waves are calculated by the multiple scattering theory. It is shown that within
partial bandgaps, the waves tend to bend away from the forbidden directions.
Such a property may render novel applications in manipulating optical flows. In
addition, the relevance with the imaging by flat photonic crystal slabs will
also be discussed.Comment: 5 pages, 5 figure
- …
