1,467 research outputs found
Coagulation reaction in low dimensions: Revisiting subdiffusive A+A reactions in one dimension
We present a theory for the coagulation reaction A+A -> A for particles
moving subdiffusively in one dimension. Our theory is tested against numerical
simulations of the concentration of particles as a function of time
(``anomalous kinetics'') and of the interparticle distribution function as a
function of interparticle distance and time. We find that the theory captures
the correct behavior asymptotically and also at early times, and that it does
so whether the particles are nearly diffusive or very subdiffusive. We find
that, as in the normal diffusion problem, an interparticle gap responsible for
the anomalous kinetics develops and grows with time. This corrects an earlier
claim to the contrary on our part.Comment: The previous version was corrupted - some figures misplaced, some
strange words that did not belong. Otherwise identica
Structure of ternary additive hard-sphere fluid mixtures
Monte Carlo simulations on the structural properties of ternary fluid
mixtures of additive hard spheres are reported. The results are compared with
those obtained from a recent analytical approximation [S. B. Yuste, A. Santos,
and M. Lopez de Haro, J. Chem. Phys. 108, 3683 (1998)] to the radial
distribution functions of hard-sphere mixtures and with the results derived
from the solution of the Ornstein-Zernike integral equation with both the
Martynov-Sarkisov and the Percus-Yevick closures. Very good agreement between
the results of the first two approaches and simulation is observed, with a
noticeable improvement over the Percus-Yevick predictions especially near
contact.Comment: 11 pages, including 8 figures; A minor change; accepted for
publication in PR
Optimal search strategies of space-time coupled random walkers with finite lifetimes
We present a simple paradigm for detection of an immobile target by a
space-time coupled random walker with a finite lifetime. The motion of the
walker is characterized by linear displacements at a fixed speed and
exponentially distributed duration, interrupted by random changes in the
direction of motion and resumption of motion in the new direction with the same
speed. We call these walkers "mortal creepers". A mortal creeper may die at any
time during its motion according to an exponential decay law characterized by a
finite mean death rate . While still alive, the creeper has a finite
mean frequency of change of the direction of motion. In particular, we
consider the efficiency of the target search process, characterized by the
probability that the creeper will eventually detect the target. Analytic
results confirmed by numerical results show that there is an
-dependent optimal frequency that maximizes the
probability of eventual target detection. We work primarily in one-dimensional
() domains and examine the role of initial conditions and of finite domain
sizes. Numerical results in domains confirm the existence of an optimal
frequency of change of direction, thereby suggesting that the observed effects
are robust to changes in dimensionality. In the case, explicit
expressions for the probability of target detection in the long time limit are
given. In the case of an infinite domain, we compute the detection probability
for arbitrary times and study its early- and late-time behavior. We further
consider the survival probability of the target in the presence of many
independent creepers beginning their motion at the same location and at the
same time. We also consider a version of the standard "target problem" in which
many creepers start at random locations at the same time.Comment: 18 pages, 7 figures. The title has been changed with respect to the
one in the previous versio
Order statistics of the trapping problem
When a large number N of independent diffusing particles are placed upon a
site of a d-dimensional Euclidean lattice randomly occupied by a concentration
c of traps, what is the m-th moment of the time t_{j,N} elapsed
until the first j are trapped? An exact answer is given in terms of the
probability Phi_M(t) that no particle of an initial set of M=N, N-1,..., N-j
particles is trapped by time t. The Rosenstock approximation is used to
evaluate Phi_M(t), and it is found that for a large range of trap
concentracions the m-th moment of t_{j,N} goes as x^{-m} and its variance as
x^{-2}, x being ln^{2/d} (1-c) ln N. A rigorous asymptotic expression (dominant
and two corrective terms) is given for for the one-dimensional
lattice.Comment: 11 pages, 7 figures, to be published in Phys. Rev.
Non-Markovian Random Walks and Non-Linear Reactions: Subdiffusion and Propagating Fronts
We propose a reaction-transport model for CTRW with non-linear reactions and
non-exponential waiting time distributions. We derive non-linear evolution
equation for mesoscopic density of particles. We apply this equation to the
problem of fronts propagation into unstable state of reaction-transport systems
with anomalous diffusion. We have found an explicit expression for the speed of
propagating front in the case of subdiffusion transport.Comment: 7 page
Mean Field Model of Coagulation and Annihilation Reactions in a Medium of Quenched Traps: Subdiffusion
We present a mean field model for coagulation () and annihilation
() reactions on lattices of traps with a distribution of depths
reflected in a distribution of mean escape times. The escape time from each
trap is exponentially distributed about the mean for that trap, and the
distribution of mean escape times is a power law. Even in the absence of
reactions, the distribution of particles over sites changes with time as
particles are caught in ever deeper traps, that is, the distribution exhibits
aging. Our main goal is to explore whether the reactions lead to further (time
dependent) changes in this distribution.Comment: 9 pages, 3 figure
Simulations for trapping reactions with subdiffusive traps and subdiffusive particles
While there are many well-known and extensively tested results involving
diffusion-limited binary reactions, reactions involving subdiffusive reactant
species are far less understood. Subdiffusive motion is characterized by a mean
square displacement with . Recently we
calculated the asymptotic survival probability of a (sub)diffusive
particle () surrounded by (sub)diffusive traps () in one
dimension. These are among the few known results for reactions involving
species characterized by different anomalous exponents. Our results were
obtained by bounding, above and below, the exact survival probability by two
other probabilities that are asymptotically identical (except when
and ). Using this approach, we were not able to
estimate the time of validity of the asymptotic result, nor the way in which
the survival probability approaches this regime. Toward this goal, here we
present a detailed comparison of the asymptotic results with numerical
simulations. In some parameter ranges the asymptotic theory describes the
simulation results very well even for relatively short times. However, in other
regimes more time is required for the simulation results to approach asymptotic
behavior, and we arrive at situations where we are not able to reach asymptotia
within our computational means. This is regrettably the case for
and , where we are therefore not able to prove
or disprove even conjectures about the asymptotic survival probability of the
particle.Comment: 15 pages, 10 figures, submitted to Journal of Physics: Condensed
Matter; special issue on Chemical Kinetics Beyond the Textbook: Fluctuations,
Many-Particle Effects and Anomalous Dynamics, eds. K.Lindenberg, G.Oshanin
and M.Tachiy
On the joint residence time of N independent two-dimensional Brownian motions
We study the behavior of several joint residence times of N independent
Brownian particles in a disc of radius in two dimensions. We consider: (i)
the time T_N(t) spent by all N particles simultaneously in the disc within the
time interval [0,t]; (ii) the time T_N^{(m)}(t) which at least m out of N
particles spend together in the disc within the time interval [0,t]; and (iii)
the time {\tilde T}_N^{(m)}(t) which exactly m out of N particles spend
together in the disc within the time interval [0,t]. We obtain very simple
exact expressions for the expectations of these three residence times in the
limit t\to\infty.Comment: 8 page
The target problem with evanescent subdiffusive traps
We calculate the survival probability of a stationary target in one dimension
surrounded by diffusive or subdiffusive traps of time-dependent density. The
survival probability of a target in the presence of traps of constant density
is known to go to zero as a stretched exponential whose specific power is
determined by the exponent that characterizes the motion of the traps. A
density of traps that grows in time always leads to an asymptotically vanishing
survival probability. Trap evanescence leads to a survival probability of the
target that may be go to zero or to a finite value indicating a probability of
eternal survival, depending on the way in which the traps disappear with time
Asymptotic solutions of decoupled continuous-time random walks with superheavy-tailed waiting time and heavy-tailed jump length distributions
We study the long-time behavior of decoupled continuous-time random walks
characterized by superheavy-tailed distributions of waiting times and symmetric
heavy-tailed distributions of jump lengths. Our main quantity of interest is
the limiting probability density of the position of the walker multiplied by a
scaling function of time. We show that the probability density of the scaled
walker position converges in the long-time limit to a non-degenerate one only
if the scaling function behaves in a certain way. This function as well as the
limiting probability density are determined in explicit form. Also, we express
the limiting probability density which has heavy tails in terms of the Fox
-function and find its behavior for small and large distances.Comment: 16 pages, 1 figur
- …
