48 research outputs found

    Frontal cortex selects representations of the talker’s mouth to aid in speech perception

    Get PDF

    A double dissociation between anterior and posterior superior temporal gyrus for processing audiovisual speech demonstrated by electrocorticography

    Get PDF
    Human speech can be comprehended using only auditory information from the talker's voice. However, comprehension is improved if the talker's face is visible, especially if the auditory information is degraded as occurs in noisy environments or with hearing loss. We explored the neural substrates of audiovisual speech perception using electrocorticography, direct recording of neural activity using electrodes implanted on the cortical surface. We observed a double dissociation in the responses to audiovisual speech with clear and noisy auditory component within the superior temporal gyrus (STG), a region long known to be important for speech perception. Anterior STG showed greater neural activity to audiovisual speech with clear auditory component, whereas posterior STG showed similar or greater neural activity to audiovisual speech in which the speech was replaced with speech-like noise. A distinct border between the two response patterns was observed, demarcated by a landmark corresponding to the posterior margin of Heschl's gyrus. To further investigate the computational roles of both regions, we considered Bayesian models of multisensory integration, which predict that combining the independent sources of information available from different modalities should reduce variability in the neural responses. We tested this prediction by measuring the variability of the neural responses to single audiovisual words. Posterior STG showed smaller variability than anterior STG during presentation of audiovisual speech with noisy auditory component. Taken together, these results suggest that posterior STG but not anterior STG is important for multisensory integration of noisy auditory and visual speech

    Saturation in phosphene size with increasing current levels delivered to human visual cortex

    Get PDF
    Electrically stimulating early visual cortex results in a visual percept known as a phosphene. Although phosphenes can be evoked by a wide range of electrode sizes and current amplitudes, they are invariably described as small. To better understand this observation, we electrically stimulated 93 electrodes implanted in the visual cortex of 13 human subjects who reported phosphene size while stimulation current was varied. Phosphene size increased as the stimulation current was initially raised above threshold, but then rapidly reached saturation. Phosphene size also depended on the location of the stimulated site, with size increasing with distance from the foveal representation. We developed a model relating phosphene size to the amount of activated cortex and its location within the retinotopic map. First, a sigmoidal curve was used to predict the amount of activated cortex at a given current. Second, the amount of active cortex was converted to degrees of visual angle by multiplying by the inverse cortical magnification factor for that retinotopic location. This simple model accurately predicted phosphene size for a broad range of stimulation currents and cortical locations. The unexpected saturation in phosphene sizes suggests that the functional architecture of cerebral cortex may impose fundamental restrictions on the spread of artificially evoked activity and this may be an important consideration in the design of cortical prosthetic devices

    The Fourth Bioelectronic Medicine Summit "Technology Targeting Molecular Mechanisms": current progress, challenges, and charting the future.

    Get PDF
    There is a broad and growing interest in Bioelectronic Medicine, a dynamic field that continues to generate new approaches in disease treatment. The fourth bioelectronic medicine summit "Technology targeting molecular mechanisms" took place on September 23 and 24, 2020. This virtual meeting was hosted by the Feinstein Institutes for Medical Research, Northwell Health. The summit called international attention to Bioelectronic Medicine as a platform for new developments in science, technology, and healthcare. The meeting was an arena for exchanging new ideas and seeding potential collaborations involving teams in academia and industry. The summit provided a forum for leaders in the field to discuss current progress, challenges, and future developments in Bioelectronic Medicine. The main topics discussed at the summit are outlined here

    Electrocorticography reveals continuous auditory and visual speech tracking in temporal and occipital cortex

    Get PDF
    Contains fulltext : 217240pub.pdf (Publisher’s version ) (Closed access) Contains fulltext : 217240pos.pdf (Author’s version postprint ) (Open Access)During natural speech perception, humans must parse temporally continuous auditory and visual speech signals into sequences of words. However, most studies of speech perception present only single words or syllables. We used electrocorticography (subdural electrodes implanted on the brains of epileptic patients) to investigate the neural mechanisms for processing continuous audiovisual speech signals consisting of individual sentences. Using partial correlation analysis, we found that posterior superior temporal gyrus (pSTG) and medial occipital cortex tracked both the auditory and visual speech envelopes. These same regions, as well as inferior temporal cortex, responded more strongly to a dynamic video of a talking face compared to auditory speech paired with a static face. Occipital cortex and pSTG carry temporal information about both auditory and visual speech dynamics. Visual speech tracking in pSTG may be a mechanism for enhancing perception of degraded auditory speech. This article is protected by copyright. All rights reserved.13 p
    corecore